Dynamic Rheological Behavior of Low Water-to-binder Ratio Mortars under Large Amplitude Oscillatory Shear (LAOS)

Zhen He , Rui Jiang , Yang Li

Journal of Wuhan University of Technology Materials Science Edition ›› 2018, Vol. 33 ›› Issue (3) : 608 -618.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2018, Vol. 33 ›› Issue (3) : 608 -618. DOI: 10.1007/s11595-018-1868-y
Article

Dynamic Rheological Behavior of Low Water-to-binder Ratio Mortars under Large Amplitude Oscillatory Shear (LAOS)

Author information +
History +
PDF

Abstract

This work focuses on the dynamic rheological behavior of low water-to-binder ratio cement mortars blended with fly ash microspheres (FAM) or silica fume (SF). The initial slump flow of each group has been controlled at similar values by adjusting the superplasticizer dosages. With the help of a coaxial cylinder rheometer, the dynamic rheological behaviors of these mortars are investigated by frequency sweeping in the range of 0–2 Hz under large amplitude oscillatory shear (LAOS). Based on the systematical elaboration of dynamic rheological testing theory, the experimental data are processed according to Lissajous plot fitting to reveal the viscoelastic characteristics. The nonlinearity of response signals is further assessed with Fourier transform (FT) analysis. The parameters, storage modulus G', loss modulus G" and relative amplitude I 3/I 1 are proposed to clarify the influences of FAM and SF on the stability and energy consumption of local structures and nonlinearity of response torques. The hydration characteristics of various groups well confirmed the rheological phenomenon. This study is beneficial for the preparation and optimization of flow state concrete such as pumping concrete and self-compacting concrete.

Keywords

dynamic rheology / viscoelastic behavior / LAOS / mortar / mineral admixture / Lissajous plots / Fourier transform

Cite this article

Download citation ▾
Zhen He, Rui Jiang, Yang Li. Dynamic Rheological Behavior of Low Water-to-binder Ratio Mortars under Large Amplitude Oscillatory Shear (LAOS). Journal of Wuhan University of Technology Materials Science Edition, 2018, 33(3): 608-618 DOI:10.1007/s11595-018-1868-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Yim H J, Kim J H, Kwon S K. Effect of Admixtures on the Yield Stresses of Cement Pastes under High Hydrostatic Pressures[J]. Mater., 2016, 9(3): 147

[2]

Long W J, Khayat K H, Lemieux G, et al. Performance-based Specifications of Workability Characteristics of Prestressed Precast Self-consolidating Concrete-a North American Prospective[J]. Mater., 2014, 7(4): 2474

[3]

Le H T, Kraus M, Siewert K, et al. Effect of Macro-mesoporous Rice Husk Ash on Rheological Properties of Mortar Formulated from Self-compacting High Performance Concrete[J]. Constr. Build. Mater., 2015, 80: 225-235.

[4]

Christensen M B, Wolchok J C, Klemuk S A, et al. Development of A Bilayer Ring System for Achieving High Strain in Commercial Rheometers[J]. J. Biomech., 2015, 48(12): 3512-3516.

[5]

Soualhi H, Kadri E H, Ngo T-T, et al. Design of Portable Rheometer with New Vane Geometry to Estimate Concrete Rheological Parameters[J]. Statyba., 2016, 23(3): 347-355.

[6]

Hocevar A, Kavcic F, Bokan-Bosiljkov V. Rheological Parameters of Fresh Concrete-Comparison of Rheometers[J]. Gradevinar., 2013, 65(2): 99-109.

[7]

Feys D, Wallevik J E, Yahia A, et al. Extension of the Reiner-Riwlin Equation to Determine Modified Bingham Parameters Measured in Coaxial Cylinders Rheometers[J]. Mater. Struct., 2013, 46(1-2): 289-311.

[8]

Güneyisi E, Gesoglu M, Naji N, et al. Evaluation of the Rheological Behavior of Fresh Self-Compacting Rubberized Concrete by Using the Herschel–Bulkley and Modified Bingham Models[J]. Arch. Civ. Mech. Eng., 2016, 16(1): 9-19.

[9]

González-Taboada I, González-Fonteboa B, Martínez-Abella F, et al. Self-compacting Recycled Concrete: Relationships between Empirical and Rheological Parameters and Proposal of A Workability Box[J]. Constr. Build. Mater., 2017, 143: 537-546.

[10]

Chalencon F, Dumont P J, Orgéas L, et al. Homogeneous and Heterogeneous Rheology and Flow-Induced Microstructures of a Fresh Fiber-reinforced Mortar[J]. Cem. Concr. Res., 2016, 82: 130-141.

[11]

Lomboy G R, Wang X H, Wang K J. Rheological Behavior and Formwork Pressure of SCC, SFSCC, and NC Mixtures[J]. Cem. Concr. Compos., 2014, 54: 110-116.

[12]

Han D, Ferron R D. Effect of Mixing Method on Microstructure and Rheology of Cement Paste[J]. Constr. Build. Mater., 2015, 93: 278-288.

[13]

Pei R, Liu J, Wang S S. Use of Bacterial Cell Walls as a Viscosity-modifying Admixture of Concrete[J]. Cem. Concr. Compos., 2015, 55(55): 186-195.

[14]

Landrou G, Brumaud C, Winnerfeld F, et al. Lime as an Anti-Plasticizer for Self-compacting Clay Concrete[J]. Mater., 2016, 9(5): 330

[15]

Zhao M, Zhang X, Zhang Y J. Effect of Free Water on the Flowability of Cement Paste with Chemical or Mineral Admixtures[J]. Constr. Build. Mater., 2016, 111: 571-579.

[16]

Mechtcherine V, Secrieru E, Schröfl C. Effect of Superabsorbent Polymers (SAPs) on Rheological Properties of Fresh Cement-Based Mortars-Development of Yield Stress and Plastic Viscosity over Time[J]. Cem. Concr. Res., 2015, 67: 52-65.

[17]

Mardani-Aghabaglou A, Tuyan M, Yilmaz G, et al. Effect of Different Types of Superplasticizer on Fresh, Rheological and Strength Properties of Self-consolidating Concrete[J]. Constr. Build. Mater., 2013, 47: 1020-1025.

[18]

Nehdi M, Martini S A. Estimating Time and Temperature Dependent Yield Stress of Cement Paste Using Oscillatory Rheology and Genetic Algorithms[J]. Cem. Concr. Res., 2009, 39(11): 1007-1016.

[19]

Sun Z H, Voigt T, Shah S P. Rheometric and Ultrasonic Investigations of Viscoelastic Properties of Fresh Portland Cement Pastes[J]. Cem. Concr. Res., 2006, 36(2): 278-287.

[20]

Papo A, Caufin B. A Study of the Hydration Process of Cement Pastes by Means of Oscillatory Rheological Techniques[J]. Cem. Concr. Res., 1991, 21(6): 1111-1117.

[21]

Nachbaur L, Mutin J C, Nonat A, et al. Dynamic Mode Rheology of Cement and Tricalcium Silicate Pastes from Mixing to Setting[J]. Cem. Concr. Res., 2001, 31(2): 183-192.

[22]

Zhang Y R, Kong X M, Gao L, et al. In-Situ Measurement of Viscoelastic Properties of Fresh Cement Paste by A Microrheology Analyzer[J]. Cem. Concr. Res., 2016, 79: 291-300.

[23]

Papo A, Piani L. Effect of Various Superplasticizers on the Rheological Properties of Portland Cement Pastes[J]. Cem. Concr. Res., 2004, 34(11): 2097-2101.

[24]

Nehdi M L, Al-Martini S. Effect of Temperature on Oscillatory Shear Behavior of Portland Cement Paste Incorporating Chemical Admixtures[J], J. Mater. Civ. Eng., 2007, 19(12): 1090-1100.

[25]

Tee T-T, Dealy J M. Nonlinear Viscoelasticity of Polymer Melts[J]. J. Rheol., 1975, 19(19): 595-615.

[26]

Zhang Y X, Zuo M, Song Y H, et al. Dynamic Rheology and Dielectric Relaxation of Poly(Vinylidene Fluoride)/Poly(Methyl Methacrylate) Blends[J]. Compos. Sci. & Technol., 2015, 106: 39-46.

[27]

Hyun K, Wilhelm M, Klein C O, et al. A Review of Nonlinear Oscillatory Shear Testes: Analysis and Application of Large Amplitude Oscillatory Shear (LAOS)[J]. Prog. Polym. Sci., 2011, 36(12): 1697-1753.

[28]

Pearson D S, Rochefort W E. Behavior of Concentrated Polystyrene Solutions in Large-Amplitude Oscillating Shear Fields[J]. J. Polym. Sci. Polym. Phys. Ed., 1982, 20(1): 83-98.

AI Summary AI Mindmap
PDF

112

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/