Theoretical Study of Electron Paramagnetic Resonance Spectra and Local Lattice Distortion for Mn2+ in Zn(ClO4)2·6(H2O)Mg(ClO4)2·6(H2O)

Jufen Li , Jianli Huo , Xinhui Wu

Journal of Wuhan University of Technology Materials Science Edition ›› 2018, Vol. 33 ›› Issue (3) : 571 -574.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2018, Vol. 33 ›› Issue (3) : 571 -574. DOI: 10.1007/s11595-018-1862-4
Article

Theoretical Study of Electron Paramagnetic Resonance Spectra and Local Lattice Distortion for Mn2+ in Zn(ClO4)2·6(H2O)Mg(ClO4)2·6(H2O)

Author information +
History +
PDF

Abstract

The electron paramagnetic resonance (EPR) spectra of trigonal Mn2+ centers in Zn(ClO4)2·6(H2O) and Mg(ClO4)2·6(H2O) crystals were studied on the basis of the complete energy matrices for a d 5 configuration ion in a trigonal ligand field. It was demonstrated that the local lattice structure around a trigonal Mn2+ center has an compressed distortion along the crystalline c 3 axis, and when Mn2+ is doped in the Zn(ClO4)2·6(H2O) and Mg(ClO4)2·6(H2O) crystals, there is a similar local distortion. From the EPR calculation, the local lattice structure parameters R=2.183 2 Å, for Zn(ClO4)2·6(H2O), R=2.130 2 Å, for Mg(ClO4)2·6(H2O) have been determined.

Keywords

Zn(ClO4)2·6(H2O):Mn2+ / Mg(ClO4)2·6(H2O):Mn2+ systems / local lattice structure distortion / EPR spectrum / ligand-fields theory

Cite this article

Download citation ▾
Jufen Li, Jianli Huo, Xinhui Wu. Theoretical Study of Electron Paramagnetic Resonance Spectra and Local Lattice Distortion for Mn2+ in Zn(ClO4)2·6(H2O)Mg(ClO4)2·6(H2O). Journal of Wuhan University of Technology Materials Science Edition, 2018, 33(3): 571-574 DOI:10.1007/s11595-018-1862-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Tiway C S, Skarkar R, Kumbhakar P. Synthesis and Optical Characterization of Monodispersed Mn2+ Doped CdS Nanoparticles[J]. Phys. Lett.A, 2008, 372(36): 5825-5830.

[2]

Zajac M, Gosk J, Grzanka E, et al. Ammonothermal Synthesis of GaN Doped with Transition Metal Ions (Mn, Fe, Cr)[J]. J.Alloy Compd., 2008, 456(1-2): 324-338.

[3]

Acikgoz M, Kazan S, Mikailov FA, et al. Structural Phase Transitions in Fe3+-Doped Ferroelectric TiGaSe2 Crystal[J]. Solid State Commun., 2008, 145(11-12): 539-544.

[4]

García-Lastra JM, Barriuso MT, Aramburu JA, et al. Anisotropic Relaxation of Mn2+ and Ni2+ Impurities in K2MgF4[J]. Chem. Phys. Lett., 2009, 473(1-3): 88-91.

[5]

Ram K, Manju Maurya. Characterization of Mn2+ Doped Tetramethyl Ammonium Tetra Chlorozincate Single Crystal Using EPR and Optical Absorption[J]. Mater. Chem. Phys., 2008, 108(2-3): 257-262.

[6]

Ram K, Ashutosh K Shukla. ESR and Optical Study of Mn2+ Doped Ammonium Selenate Single Crystals[J]. Spectrochim. Acta. Part.A, 2007, 66(2): 453-456.

[7]

Ram K, Har G, Gupta SK, et al. EPR and Optical Absorption Study of Mn2+-Doped Zinc Ammonium Phosphate Hexahydrate Single Crystals[J]. Phys. B, 2007, 392(1-2): 92-98.

[8]

Dayal R, Ramachandra D R, Putcha Venkateswarlu. Electron Paramagentic Resonance and Phase Transitions in Mn2+ Doped Cd(-ClO4)2·6H2O[J]. J.Chem.Phys., 1979, 70(9): 2487-2490.

[9]

LECH J, SLEZAK A. EPR of Mn2+ in [Co(H2O)6](ClO4)2 Single Crystals: Estimation of Co2+ Spin-Lattice Relaxation Time[J]. J.Phys.Chem. Solid, 1991, 52(5): 685-689.

[10]

Prokhorov AA, Neilo GN, Prokhorov AD. EPR Studies of Phase Transitions in Perchlorates [M2+(ClO4)2·6H2O] At High Pressures[J]. Phys. Solid. State, 2006, 48(2): 340-347.

[11]

Akhilesh K J, Upreti GC. EPR Observation of A High Temperature Phase Transition in Zn(ClO4)2·6H2O:Mn2+[J]. Solid State Commun., 1978, 28(7): 571-574.

[12]

DAYAL R, Ramachandar Rao D. EPR Study of Phase Transitions In Single Crystals of Cd (ClO4)2·6H2O And Cd (ClO4)2·6 D2O[J]. Phys. Status Solidi A, 1980, 58: 155-158.

[13]

Jain K, Upreti G C. EPR Study of A New Low-temperature Phase Transition in Zn(ClO4)2·6H2O[J]. J. Phys. Chem. Solids, 1982, 43(6): 563-569.

[14]

White A, Falk M. Phase Transitions in M(ClO4)2·6H2O (M=Mg, Zn) Investigations by Adiabatic Calorimetry and Infrared Spectroscopy[J]. J. Chem. Phys., 1986, 84(6): 3484-3490.

[15]

White A, Falk M. A Study of Phase Transitions In Cd(ClO4)2·6H2O by Adiabatic Calorimetry and Infrared Spectroscopy[J]. J. Chem. Phys., 1985, 83(5): 2467-2474.

[16]

Patel V. Temperature Evolution of The Infrared Spectrum Of Ni(-ClO4)2·6H2O[J]. Solid State Commun., 1985, 53(4): 431-435.

[17]

Bleaney B, Trenam RS. The Dispersion of Matter in Turbulent Flow Through A Pipe[J]. Proc. R. Soc. London, Ser. A, 1954, 223: 1-14.

[18]

Kuang XY. Analysis of the Electron Paramagnetic Resonance Zero-Field Splitting for Fe3+ in Sapphire[J]. Phys. Rev. B, 1987, 36(1): 712-714.

[19]

Newman DJ, Urban W. Interpretation of S-State Ion E.P.R. Spectra[J]. Adv. Phys., 1975, 24: 793-796.

[20]

Van Vleck J H. Theory of the Variations in Paramagnetic Anisotropy Among Different Salts of the Iron Group[J]. Phys. Rev., 1932, 1: 208-210.

[21]

Zhao MG, Bai GR, Jin HC. D-orbital Theory For Mn2+-Complex Ions in Crystals[J]. J. Phys.C, 1982, 15: 5959-5964.

[22]

Lohr LL Jr. Optical Spectra of Divalent Manganese Salts. I. Energy Levels for Cubic and Lower-Symmetry Complexes[J]. J. Chem. Phys., 1966, 45(10): 3611-3622.

[23]

Zheng W C. Local Trigonal Distortions of Some Paramagnetic Impurity Centers in ZnSiF6·6H2O Crystal[J]. Radiat. Eff. Defect Solids, 1996, 140: 329-334.

[24]

Curie D, Barthon C, Canny B. Covalent Bonding of Mn2+ Ions in Octahedral and Tetrahedral Coordination[J]. J. Chem. Phys., 1974, 61(8): 3048-3063.

[25]

Kuang XY, Zhang W. Analysis of Temperature-Dependent Electron-Paramagnetic-Rresonance Spectra for S-State Ions in MgO[J]. Phys. Rev. B, 1992, 45: 8104-8107.

[26]

Jain VK. Superposition Model Analysis for The Zero-Field Splitting of Mn2+ in Some Crystals[J]. Modern Physics Letters B, 2006, 20: 1917-1922.

AI Summary AI Mindmap
PDF

134

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/