Improved Breakdown Strength in (Ba0.6Sr0.4)0.85Bi0.1TiO3 Ceramics with Addition of CaZrO3 for Energy Storage Application

Xiaohong Wang , Zhenlin Li , Fangyuan Chen , Junxiong Gao , Wenzhong Lü

Journal of Wuhan University of Technology Materials Science Edition ›› 2018, Vol. 33 ›› Issue (3) : 545 -551.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2018, Vol. 33 ›› Issue (3) : 545 -551. DOI: 10.1007/s11595-018-1858-0
Article

Improved Breakdown Strength in (Ba0.6Sr0.4)0.85Bi0.1TiO3 Ceramics with Addition of CaZrO3 for Energy Storage Application

Author information +
History +
PDF

Abstract

(Ba0.6Sr0.4)0.85Bi0.1TiO3 ceramics doped with x wt%CaZrO3 (x= 0-10) were synthesized by solid-state reaction method. The effects of CaZrO3 amount on the dielectric properties and structure of (Ba0.6Sr0.4)0.85Bi0.1TiO3 ceramics were investigated. X-ray diffraction results indicated a pure cubic perovskite structure for all samples and that the lattice parameter increased till x=5 and then slightly decreased. A homogenous microstructure was observed with the addition of CaZrO3. Dielectric measurements revealed a relaxor-like characteristic for all samples and that the diffusivity γ reached the maximum value of 1.78 at x=5. With the addition of CaZrO3, the dielectric constant dependence on electric field was weakened, insulation resistivity enhanced and dielectric breakdown strength improved obviously and reached 19.9 kV/mm at x=7.5. In virtue of low dielectric loss (tan δ<0.001 5), moderate dielectric constant (ε r >1 500) and high breakdown strength (E b >17.5 kV/mm), the CaZrO3 doped (Ba0.6Sr0.4)0.85Bi0.1TiO3 ceramic is a potential candidate material for high power electric applications.

Keywords

breakdown strength / dielectric properties / relaxor characteristic / energy storage / (Ba,Sr) TiO3

Cite this article

Download citation ▾
Xiaohong Wang, Zhenlin Li, Fangyuan Chen, Junxiong Gao, Wenzhong Lü. Improved Breakdown Strength in (Ba0.6Sr0.4)0.85Bi0.1TiO3 Ceramics with Addition of CaZrO3 for Energy Storage Application. Journal of Wuhan University of Technology Materials Science Edition, 2018, 33(3): 545-551 DOI:10.1007/s11595-018-1858-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ogihara H, Randall CA, Trolier-McKinstry S. High-energy Density Capacitors Utilizing 0.7BaTiO3-0.3BiScO3 Ceramics[J]. J. Am. Ceram. Soc., 2009, 92(8): 1719-1724.

[2]

Fletcher NH, Hilton AD, Ricketts BW. Optimization of Energy Storage Density in Ceramic Capacitors[J]. J. Phys. D: Appl. Phys., 1996, 29(1): 253-258.

[3]

Lee H, Kim JR, Lanagan MJ, et al. High-Energy Density Dielectrics and Capacitors for Elevated Temperatures: Ca(Zr,Ti)O3[J]. J. Am. Ceram. Soc., 2013, 96(4): 1209-1213.

[4]

Wang Z, Cao M, Yao Z, et al. Effects of Sr/Ti Ratio on the Microstructure and Energy Storage Properties of Nonstoichiometric SrTiO3 Ceramics[J]. Ceram. Inter., 2014, 40(1): 929-933.

[5]

Wu ZH, Liu HX, Cao M H, et al. Effect of BaO-Al2O3-B2O3-SiO2 Glass Additive on Densification and Dielectric Properties of Ba0.3Sr0.7TiO3 Ceramics[J]. J. Ceram. Soc. Jpn., 2008, 116(1350): 345-349.

[6]

Xu Q, Li T, Hao H, et al. Enhanced Energy Storage Properties of NaNbO3 Modified Bi0.5Na0.5TiO3 Based Ceramics[J]. J. Euro. Ceram. Soc., 2015, 35(2): 545-553.

[7]

Cross LE. Relaxor Ferroelectrics[J]. Ferroelectrics, 1987, 76(1): 241-267.

[8]

De Mathan N, Husson E, Calverin G, et al. Structural Study of a Poled PbMg1/2Nb2/3O3 Ceramic at Low-Temperature[J]. Mater. Res. Bull., 1991, 26(11): 1167-1172.

[9]

Ma B, Kwon DK, Narayanan M, et al. Dielectric Properties and Energy Storage Capability of Antiferroelectric Pb0.92La0.08Zr0.95Ti0.05O3 Filmon-Foil Capacitors[J]. J. Mater. Res., 2009, 24(9): 2993-2996.

[10]

Wang X, Zhang Y, Song X, et al. Glass Additive in Barium Titanate Ceramics and Its Influence on Electrical Breakdown Strength in Relation with Energy Storage Properties[J]. J. Eur. Ceram. Soc., 2012, 32(3): 559-567.

[11]

Zhang Q, Wang L, Luo J, et al. Improved Energy Storage Density in Barium Strontium Titanate by Addition of BaO-SiO2-B2O3 Glass[J]. J. Am. Ceram. Soc., 2009, 92(8): 1871-1873.

[12]

Zhang Q, Wang L, Luo J, et al. Ba0.4Sr0.6TiO3/MgO Composites with Enhanced Energy Storage Density and Low Dielectric Loss for Solid-State Pulse-Forming Line[J]. Int. J. Appl. Ceram. Technol., 2010, 7(S1): E124-128.

[13]

Dong G, Ma S, Du J, et al. Dielectric Properties and Energy Storage Density in ZnO-Doped Ba0.3Sr0.7TiO3 Ceramics[J]. Ceram. Int., 2009, 35(5): 2069-2075.

[14]

Wang T, Jin L, Li C, et al. Relaxor Ferroelectric BaTiO3-Bi(Mg2/3Nb1/3)O3 Ceramics for Energy Storage Application[J]. J. Am. Ceram. Soc., 2015, 98(2): 559-566.

[15]

Zhou L, Vilarinho PM, Baptista JL. Solubility of Bismuth Oxide in Barium Titanate[J]. J. Am. Ceram. Soc., 1999, 82(4): 1064-1066.

[16]

Bahri F, Simon A, Khemakhem H, et al. Classical or Relaxor Ferroelectric Behavior of Ceramics with Composition Ba1-xBi1/3xTiO3[J]. Physica Status Solidi A, 2001, 184(2): 459-464.

[17]

Zhang GF, Cao M, Hao H, et al. Energy Storage Characteristics in Sr(1-1.5x)BixTiO3 Ceramics[J]. Ferroelectrics, 2013, 447(1): 86-94.

[18]

Lee S, Woodford WH, Randall CA. Crystal and Defect Chemistry Influences on Band Gap Trends in Alkaline Earth Perovskites[J]. Appl. Phys. Lett., 2008, 92(20): 201909

[19]

Shannon RD. Crystal Physics, Diffraction, Theoretical and General Crystallography[J]. Acta Cryst. A, 1976, 32: 751-767.

[20]

Wang Z, Cao M, Yao Z, et al. Dielectric Relaxation Behavior and Energy Storage Properties in SrTiO3 Ceramics with Trace Amounts of ZrO2 Additives[J]. Ceram. Inter., 2014, 40(9): 14127-14132.

[21]

Weibull W. A Statistical Distribution Function of Wide Applicability[J]. J. Appl. Mech., 1951, 18: 293-302.

[22]

McPherson JW, Kim J, Shanware A, et al. Trends in the Ultimate Breakdown Strength of High Dielectric-Constant Materials[J]. IEEE Trans. Electron. Dev., 2003, 50(8): 1771-1778.

[23]

Luo J, Du J, Tang Q, et al. Lead Sodium Niobate Glass-Ceramic Dielectrics and Internal Electrode Structure for High Energy Storage Density Capacitors[J]. IEEE Trans. Electron. Dev., 2008, 55(12): 3549-3554.

[24]

Gerson R, Marshall TC. Dielectric Breakdown of Porous Ceramics[J]. J. Appl. Phys., 1959, 30(11): 1650-1653.

[25]

Young A, Hilmas G, Zhang SC, et al. Effect of Liquid-Phase Sintering on the Breakdown Strength of Barium Titanate[J]. J. Am. Ceram. Soc., 2007, 90(5): 1504-1510.

[26]

Song Z, Liu H, Zhang S, et al. Effect of Grain Size on the Energy Storage Properties of (Ba0.4Sr0.6)TiO3 Paraelectric Ceramics[J]. J. Euro. Ceram. Soc., 2014, 34(5): 1209-1217.

[27]

Setter N, Cross LE. The Contribution of Structural Disorder to Diffuse Phase Transitions in Ferroelectrics[J]. J. Mater. Sci., 1980, 15(10): 2478-2482.

[28]

Bokov AA, Ye ZG. Frontiers of Ferroelectricity, 2006 New York: Springer US. 31-52.

[29]

Pilgrim SM, Sutherland AE, Winzer S D a a U P f R Ceramics[J]. J. Am. Ceram. Soc., 1990, 73(10): 3122-3125.

[30]

Anwar S, Sagdeo PR, Lalla NP. Ferroelectric Relaxor Behavior in Hafnium Doped Barium-Titanate Ceramic[J]. Solid State Commun., 2006, 138(7): 331-336.

AI Summary AI Mindmap
PDF

109

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/