Experimental and Modeling Studies on the Chemical Vapor Infiltration with Respect to the Effects of Thermal Gradient and Other Operating Parameters

Kyung Do Joo , Do Hoon Kim , Gui Yung Chung

Journal of Wuhan University of Technology Materials Science Edition ›› 2018, Vol. 33 ›› Issue (3) : 525 -532.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2018, Vol. 33 ›› Issue (3) : 525 -532. DOI: 10.1007/s11595-018-1854-4
Article

Experimental and Modeling Studies on the Chemical Vapor Infiltration with Respect to the Effects of Thermal Gradient and Other Operating Parameters

Author information +
History +
PDF

Abstract

Effects of operating parameters in the thermal gradient chemical vapor infiltration of propane such as thermal gradient, diffusion, infiltrations time, and concentration of propane were studied by focusing on the visualizations of the intrinsic effects of these parameters. A uniform deposition in the preform was obtained with a gradually increasing temperature along the gas flow. The uniformity of deposition through the preform got improved with increasing deposition time. Results of numerical modeling estimated the experimental data very well when the pre-exponential factor of the overall rate of carbon deposition from propane reported by Vaidyaraman[1] was multiplied by 4. The average density of a preform increased by about 3 times from 0.38 to 1.15 g/cm3 after 60 hr deposition with a thermal gradient under the conditions of 3% propane in nitrogen and 840 to 900 °C.

Keywords

TG-CVI / propane / C/C composites / uniform deposition / mathematical modeling

Cite this article

Download citation ▾
Kyung Do Joo, Do Hoon Kim, Gui Yung Chung. Experimental and Modeling Studies on the Chemical Vapor Infiltration with Respect to the Effects of Thermal Gradient and Other Operating Parameters. Journal of Wuhan University of Technology Materials Science Edition, 2018, 33(3): 525-532 DOI:10.1007/s11595-018-1854-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Vaidyaraman S, Lackey WJ, Agrawal PK, et al. 1-D Model for Forced Flow-thermal Gradient Chemical Vapor Infiltration Process for Carbon/Carbon Composites[J]. Carbon., 1996, 34(9): 1123-1133.

[2]

Yang X, Su Z, Huang Q, et al. Microstructure and Mechanical Properties of C/C-ZrC-SiC Composites Fabricated by Reactive Melt Infiltration with Zr, Si Mixed Powders[J]. J. Mater. Sci. Technol., 2013, 29(8): 702-710.

[3]

Fitzer E, Manocha LM. Carbon Reinforcement and Carbon/Carbon Composites, 1998 Heidelberg: Springer.

[4]

Shao HC, Xia HY, Liu GW, et al. Densification Behavior and Performances of C/C Composites Derived from Various Carbon Matrix Precursors[J]. J. Mater. Eng. Perform., 2014, 23(1): 133-141.

[5]

Hwang DG, Chung GY. Modeling Studies on the Effects of the Process Parameters in Forced-flow Chemical Vapor Infiltration Reactor for the Preparation of C/C Composition[J]. Korean J. Chem. Eng., 2012, 29(9): 1266-1271.

[6]

Delgaes P. Chemical Vapor Deposition and Infiltration Processes of Carbon Materials[J]. Carbon., 2002, 40(5): 641-657.

[7]

Bang KH, Chung GY, Koo HH. Preparation of C/C Composites by the Chemical Vapour Infiltration (CVI) of Propane Pyrolysis[J]. Korean J. Chem. Eng., 2011, 28(1): 272-278.

[8]

Dever JA, Nathal MV, DiCarlo JA. Research on High-Temperature Aerospace Materials at NASA Glenn Research Center[J]. J. Aaerosp. Eng., 2013, 26(2): 500-514.

[9]

Vaidyaraman S, Lackey WJ, Freeman GB, et al. Fabrication of Carbon-Carbon Composites by Forced Flow-thermal Gradient Chemical Vapor Infiltration[J]. J. Mater. Res., 1995, 10(6): 1469-1477.

[10]

Tang ZH, Qu DN, Xiong J, et al. Effects of Infiltration Condition on the Densification Behavior of Carbon/Carbon Composites Prepared by a Directional-flow Thermal Gradient CVI Process[J]. Carbon, 2003, 41(14): 2703-2710.

[11]

Chen JX, Ciong X, Huang QZ, et al. Densification Mechanism of Chemical Vapour Infiltration Technology for Carbon/Carbon Composites[J]. Trans. Nonferrous Met. Soc. China., 2007, 17(3): 519-521.

[12]

Kim H, Chung GY, Koo HH, et al. Effects of Process Parameters for the Preparation of C/SiC Composites in the F-Chemical Vapour Infiltration Reactor[J]. Korean J. Chem. Eng., 2004, 21(5): 929-934.

[13]

Rollins DK, Rollins D J, Jr AD. Spatial-Temporal Semi-Empirical Dynamic Modeling of Thermal Gradient CVI Processes[J]. Chem. Eng. Res. Des., 2007, 85(10): 1390-1396.

[14]

Zhao JG, Li KZ, Li HJ, et al. The Influence of Thermal Gradient on Pyrocarbon Deposition in Carbon/carbon Composites During the CVI Process[J]. Carbon., 2006, 44(4): 786-791.

[15]

Golecki I, Morris RC, Narasimhan D, et al. Rapid Densification of Porous Carbon-carbon Composites by Thermal-gradient Chemical Vapor Infiltration[J]. Appl. Phys. Lett., 1995, 66(18): 2334-2336.

[16]

Golecki I. Rapid Vapor-phase Densification of Refractory Composites[J]. Mater. Sci. and Eng., 1997, 20(2): 37-124.

[17]

Tang Z, Xiong X, Zhang H. Effect Carrier Gas on Bulk Density and Microstructure Distribution of Carbon/carbon Composotes Fabricated by Thermal Gradient Chemical Vapor Infiltration[J]. Carbon, 2012, 50(3): 1243-1252.

[18]

Ziegler I, Fournet R, Marquaire PM. Pyrolysis of Propane for CVI of Pyrocarbon Part II. Experimental and Modeling Study of Polyaromatic Species[J]. Anal. Appl. Pyrol., 2005, 73(2): 212-230.

[19]

Ziegler I, Fournet R, Lacroix R, et al. Pyrolysis of Propane for CVI of Pyrocarbon. Part IV: Main Pathways Involved in Pyrocarbon Deposit[J]. Anal. Appl. Pyrol., 2013, 104: 48-58.

[20]

Zhang W, Huttinger KJ. Simulation Studies on Chemical Vapour Infiltration of Carbon[J]. Compos. Sci. and Technol., 2002, 62: 1947-1955.

[21]

Tesner PA. Thrower PA. Kinetics of Pyrolytic Carbon Formation. Chemistry and Physics of Carbon, 1988 Monticello: Marcel Dekker Inc..

AI Summary AI Mindmap
PDF

116

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/