Preparation of magnetic fluorescent dual-drug nanocomposites for codelivery of kaempferol and paclitaxel

Xiaojuan Zhang , Qingqing Pan , Lingyun Hao , Qing Lin , Xiangping Tian , Zhiying Zhang , Shanshan Wang , Hehe Wang

Journal of Wuhan University of Technology Materials Science Edition ›› 2018, Vol. 33 ›› Issue (1) : 256 -262.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2018, Vol. 33 ›› Issue (1) : 256 -262. DOI: 10.1007/s11595-018-1814-z
Article

Preparation of magnetic fluorescent dual-drug nanocomposites for codelivery of kaempferol and paclitaxel

Author information +
History +
PDF

Abstract

Magnetic fluorescent dual-drug nanocomposites (MFDDs) were developed with the aim of simultaneouly delivering two different anticancer drugs, kaempferol (KAE) and paclitaxel (PTX). Firstly, Fe3O4/ bovine serum albumin (Fe3O4/BSA) composite microspheres with physically entrapped KAE were prepared, then microspheres were modified with PTX/graphene quantum dots (PTX/GQDs) through chemically bonding, and the MFDDs were obtained. The properties of nancomposites were characterized by X-ray diffractometry, Fourier-transform infrared spectroscopy, transmission electron microscopy, vibrating sample magnetometry and X-ray fluorescence spectrometry. It was found that the superparamagnetic nanocomposites had ultrafine size (below 110 nm), high saturation magnetization of 24.36 emu/g, and significant fluorescence. Furthermore, the cumulative in vitro release of the MFDDs exhibited controlled drug release. Cell viability experiments confirmed that the co-administration of KAE with PTX had a superior cytotoxicity to the Hela cells compared with single drug-loaded forms. Therefore, dual anticancer drug-loaded MFDDs have the potential to be used for cancer combined chemotherapy.

Keywords

dual-drug delivery / nanocomposites / graphene quantum dots / kaempferol / paclitaxel / Hela cells

Cite this article

Download citation ▾
Xiaojuan Zhang, Qingqing Pan, Lingyun Hao, Qing Lin, Xiangping Tian, Zhiying Zhang, Shanshan Wang, Hehe Wang. Preparation of magnetic fluorescent dual-drug nanocomposites for codelivery of kaempferol and paclitaxel. Journal of Wuhan University of Technology Materials Science Edition, 2018, 33(1): 256-262 DOI:10.1007/s11595-018-1814-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Duncan R. Polymer Conjugates as Anticancer Nanomedicines[J]. Nat. Rev. Cancer, 2006, 6: 688-701.

[2]

Duong H H P, Yung L Y L. Synergistic Co-delivery of Doxorubicin and Paclitaxel using Multi-functional Micelles for Cancer Treatment[J]. Int. J. Pharm., 2013, 454(1): 486-495.

[3]

Blackwell K L, Burstein H J, Storniolo A M, et al. Randomized Study of Lapatinib Alone or in Combination with Trastuzumab in Women with ErbB2-positive, Trastuzumab-refractory Metastatic Breast Cancer[J]. J. Clin. Oncol., 2010, 28(7): 1124-1130.

[4]

Salehi R, Rasouli S, Hamishehkar H. Smart Thermo/pH Responsive Magnetic Nanogels for the Simultaneous Delivery of Doxorubicin and Methotrexate[J]. Int. J. Pharm., 2015, 487(1-2): 274-284.

[5]

Huang L, Song J C, Chen B Y. A Novel Targeting Drug Carrier to Deliver Chemical Bonded and Physical Entrapped Anti-tumor Drugs[J]. Int. J. Pharm., 2014, 466(1-2): 52-57.

[6]

Pradhan L, Srivastava R, Bahadur D. pH-and Thermosensitive Thin Lipid Layer Coated Mesoporous Magnetic Nanoassemblies as a Dual Drug Delivery System towards Thermochemotherapy of Cancer[J]. Acta Biomater., 2014, 10(7): 2976-2987.

[7]

Ashwanikumar N, Kumar N A, Nair S A, et al. Dual Drug Delivery of 5-Fluorouracil (5-FU) and Methotrexate (MTX) through Random Copolymeric Nanomicelles of PLGA and Polyethylenimine Demonstrating Enhanced Cell Uptake and Cytotoxicity[J]. Colloid. Surface B, 2014, 122: 520-528.

[8]

Calabrò F, Lorusso V, Rosati G, et al. Gemcitabine and Paclitaxel Every 2 Weeks in Patients with Previously Untreated Urothelial Carcinoma[J]. Cancer, 2009, 115(12): 2652-2659.

[9]

Marfe G, Tafani M, Indelicato M, et al. Kaempferol Induces Apoptosis in Two Different Cell Lines via Akt Inactivation, Bax and SIRT3 Activation, and Mitochondrial Dysfunction[J]. J. Cell. Biochem., 2009, 106(4): 643-650.

[10]

Xu W, Liu J, Li C, et al. Kaempferol-7-O-β-d-glucoside (KG) Isolated from Smilax China L. Rhizome Induces G2/M Phase Arrest and Apoptosis on HeLa Cells in a p53-independent Manner[J]. Cancer Lett., 2008, 264(2): 229-240.

[11]

Zhang X, Huang Y, Zhao W, et al. PEG-farnesyl Thiosalicylic Acid Telodendrimer Micelles as an Improved Formulation for Targeted Delivery of Paclitaxel[J]. Mol. Pharm., 2014, 11(8): 2807-2814.

[12]

Limtrakul P, Khantamat O, Pintha K. Inhibition of P-glycoprotein Function and Expression by Kaempferol and Quercetin[J]. J. Chemother., 2005, 17(1): 86-95.

[13]

Chong Y, Ma Y, Shen H, et al. The in Vitro and in Vivo Toxicity of Graphene Quantum Dots[J]. Biomaterials, 2014, 35(19): 5041-5048.

[14]

Nahain A A, Lee J E, In I, et al. Target Delivery and Cell Imaging using Hyaluronic Acid-functionalized Graphene Quantum Dots[J]. Mol. Pharmaceutics, 2013, 10(10): 3736-3744.

[15]

Huang C L, Huang C C, Mai F D, et al. Application of Paramagnetic Graphene Quantum Dots as a Platform for Simultaneous Dual-modality Bioimaging and Tumor-targeted Drug Delivery[J]. J. Mater. Chem. B, 2014, 3: 651-664.

[16]

Jiang H H, Zhao L C, Gai L G, et al. Conjugation of Methotrexate onto Dedoped Fe3O4/PPy Nanospheres to Produce Magnetic Targeting Drug with Controlled Drug Release and Targeting Specificity for HeLa Cells[J]. Synthetic Met., 2015, 207: 18-25.

[17]

Ren Q, Chu H, Chen M, et al. Design and Fabrication of Superparamaganitic Hybrid Microspheres for Protein Immobilization[J]. J. Wuhan Univ. Technol.-Mater. Sci. Ed., 2011, 26(6): 1084-1088.

[18]

Xu H X, Zhang Y, Niu X, et al. Preparation and in Vitro Release Properties of Mercaptopurine Drug-loaded Magnetic Microspheres[J]. J. Wuhan Univ. Technol.-Mater. Sci. Ed., 2013, 28(6): 1231-1235.

[19]

Zheng W, Gao F, Gu H. Magnetic Polymer Nanospheres with High and Uniform Magnetite Content[J]. J. Magn. Magn. Mater., 2005, 288: 403-410.

[20]

Wang L, Wang Y, Xu T, et al. Gram-scale Synthesis of Single-crystalline Graphene Quantum Dots with Superior Optical Properties[J]. Nat. Commun., 2014, 5: 5357-5357.

[21]

Navid M, Reza J M, Yahya H M, et al. Docetaxel-loaded Solid Lipid Nanoparticles: Preparation, Characterization, in Vitro, and in Vivo Evaluations[J]. J. Pharm. Sci., 2013, 102(6): 1994-2004.

[22]

Alipour S, Montaseri H, Tafaghodi M. Preparation and Characterization of Biodegradable Paclitaxel Loaded Alginate Microparticles for Pulmonary Delivery[J]. Colloid. Surface B, 2010, 81(2): 521-529.

[23]

Shamim N, Hong L, Hidajat K, et al. Thermosensitive Polymer (N-isopropylacrylamide) Coated Nanomagnetic Particles: Preparation and Characterization[J]. Colloid. Surface B, 2007, 55(1): 51-58.

[24]

Li F, Li X, Li B. Preparation of Magnetic Polylactic Acid Microspheres and Investigation of Its Releasing Property for Loading Curcumin[J]. J. Magn. Magn. Mater., 2011, 323(22): 2770-2775.

[25]

Marcilene M A R, Andreza R S, Fernando L P, et al. Preparation, Characterization and in Vitro Cytotoxicity of BSA-based Nanospheres Containing Nanosized Magnetic Particles and/or Photosensitizer[J]. J. Magn. Magn. Mater., 2009, 321: 1600-1603.

[26]

Avivi S, Gedanken A. The Preparation of Avidin Microspheres using the Snochemical Method and the Interaction of the Microspheres with Biotin[J]. Ultrason. Sonochem., 2005, 12(5): 405-409.

[27]

Youqing S, Erlei J, Bo Z, et al. Prodrugs Forming High Drug Loading Multifunctional Nanocapsules for Intracellular Cancer Drug Delivery-[J]. J. Am. Chem. Soc., 2010, 132(12): 4259-4265.

AI Summary AI Mindmap
PDF

125

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/