Poly(2,5-benzimidazole)/trisilanolphenyl POSS composite membranes for intermediate temperature PEM fuel cells

Qingting Liu , Na Ni , Quan Sun , Xiaoxue Wu , Xujin Bao , Zhang Fan , Rong Zhang , Shengfei Hu , Feng Zhao , Xiao Li

Journal of Wuhan University of Technology Materials Science Edition ›› 2018, Vol. 33 ›› Issue (1) : 212 -220.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2018, Vol. 33 ›› Issue (1) : 212 -220. DOI: 10.1007/s11595-018-1808-x
Article

Poly(2,5-benzimidazole)/trisilanolphenyl POSS composite membranes for intermediate temperature PEM fuel cells

Author information +
History +
PDF

Abstract

Novel organic-inorganic composites were in-situ synthesized by using TriSilanolPhenyl polyhedral oligomeric silsesquioxane (SO-POSS) as fillers and poly(2,5-benzimidazole) (ABPBI) as polymer matrix. The uniformly dispersed 3% SO-POSS particles in ABPBI matrix increased the thermal stability of the composite membranes. It was found that both the water and H3PO4 uptakes were increased significantly with the addition of SO-POSS due to the formation of hydrogen bonds between the POSS and H2O/H3PO4, which played a critical role in the improvement of the conductivity of the composite membranes at temperature over 100 °C. Proton conductivities of H3PO4 doped with 3wt% SO-POSS contained ABPBI membranes increased with the increase of H3PO4 absorbance, reaching the maximum proton conductivity of 2.55 × 10-3 S·cm-1 at 160 °C, indicating that the ABPBI/SO-POSS composite membrane could be a promising candidate for mid-temperature PEMFCs.

Keywords

poly(2,5-benzimidazole) / triSilanolPhenyl POSS / phosphoric acid / IT-PEMFCs

Cite this article

Download citation ▾
Qingting Liu, Na Ni, Quan Sun, Xiaoxue Wu, Xujin Bao, Zhang Fan, Rong Zhang, Shengfei Hu, Feng Zhao, Xiao Li. Poly(2,5-benzimidazole)/trisilanolphenyl POSS composite membranes for intermediate temperature PEM fuel cells. Journal of Wuhan University of Technology Materials Science Edition, 2018, 33(1): 212-220 DOI:10.1007/s11595-018-1808-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Zhang J, Xie Z, Zhang J, et al. High Temperature PEM Fuel Cells[J]. J. Power Sources., 2006, 160(2): 872-891.

[2]

Xing B Z, Savadogo O. The Effect of Acid Doping on the Conductivity of Polybenzimidazole (PBI)[J]. J. New Mater. Electrochemi. Syst., 1999, 2(2): 95-101.

[3]

Mack F, Heissler S, Laukenmann R, et al. Phosphoric Acid Distribution and Its Impact on the Performance of Polybenzimidazole Membranes[J]. J. Power Sources, 2014, 270(0): 627-633.

[4]

Yang J S, Cleemann L N, Steenberg T, et al. High Molecular Weight Polybenzimidazole Membranes for High Temperature PEMFC[J]. Fuel Cells, 2014, 14(1): 7-15.

[5]

Ergun D, Devrim Y, Bac N, et al. Phosphoric Acid Doped Polybenzimidazole Membrane for High Temperature PEM Fuel Cell[J]. J.Appl. Poly. Sci., 2012, 124(S1): 267-277.

[6]

Li S, Fried J R. Ab Initio Study of Proton Transfer and Interfacial Properties in Phosphoric Acid-Doped Polybenzimidazole[J]. Macromol. Theory and Simul., 2013, 22(8): 410-425.

[7]

Ariza M J, Jones D J, Roziere J. Role of Post-sulfonation Thermal Treatment in Conducting and Thermal Properties of Sulfuric Acid Sulfonated Poly(benzimidazole) Membranes[J]. Desalination, 2002, 147(1-3): 183-189.

[8]

Nicotera I, Kosma V, Simari C, et al. Ion Dynamics and Mechanical Properties of Sulfonated Polybenzimidazole Membranes for High-Temperature Proton Exchange Membrane Fuel Cells[J]. J. Phys.Chemi. C, 2015, 119(18): 9745-9753.

[9]

Ngamsantivongsa P, Lin H-L L, Yu T. Properties and Fuel Cell Applications of Polybenzimidazole and Ethyl Phosphoric Acid Grafted Polybenzimidazole Blend Membranes[J]. J. Membr. Sci., 2015, 491: 10-21.

[10]

Li Q, Jensen J O, Savinell R F, et al. High Temperature Proton Exchange Membranes Based on Polybenzimidazoles for Fuel Cells[J]. P. Polym. Sci., 2009, 34(5): 449-477.

[11]

Nores-Pondal F J, Buera M P, Corti H R. Thermal Properties of Phosphoric Acid-doped Polybenzimidazole Membranes in Water and Methanol–water Mixtures[J]. J.Power Sources, 2010, 195(19): 6389-6397.

[12]

Asensio J A, Borros S, Gomez-Romero P. Proton-conducting Polymers Based on Benzimidazoles and Sulfonated Benzimidazoles[J]. J. Polym. Sci. Part A -Polym. Chem., 2002, 40(21): 3703-3710.

[13]

Subianto S. Recent Advances in Polybenzimidazole/Phosphoric Acid Membranes for High-temperature Fuel Cells[J]. Polym. Int., 2014, 63(7): 1134-1144.

[14]

Asensio J A, Gomez-Romero P. Recent Developments on Proton Conducting Poly(2,5-benzimidazole) (ABPBI) Membranes for High Temperature Polymer Electrolyte Membrane Fuel Cells[J]. Fuel Cells, 2005, 5(3): 336-343.

[15]

Kim H-J, Cho S Y, An S J, et al. Synthesis of Poly(2,5-benzimidazole) for Use as a Fuel-Cell Membrane[J]. Macromol. Rapid Commun., 2004, 25(8): 894-897.

[16]

Asensio J A, Borrós S, Gómez-Romero P. Sulfonated Poly(2,5-benzimidazole) (SABPBI) Impregnated with Phosphoric Acid as Proton Conducting Membranes for Polymer Electrolyte Fuel Cells[J]. Electrochim. Acta, 2004, 49(25): 4461-4466.

[17]

Diaz L A, Abuin G C, Corti H R. Water and Phosphoric Acid Uptake of Poly [2,5-benzimidazole] (ABPBI) Membranes Prepared by Low and High Temperature Casting[J]. J. Power Sources, 2009, 188(1): 45-50.

[18]

Kim S-K, Kim T-H, Ko T, et al. Cross-linked Poly(2,5-benzimidazole) Consisting of Wholly Aromatic Groups for High-temperature PEM Fuel Cell Applications[J]. J. Membr. Sci., 2011, 373(1-2): 80-88.

[19]

Asensio J A, Borrós S, Gómez-Romero P. Polymer Electrolyte Fuel Cells Based on Phosphoric Acid-Impregnated Poly(2,5-benzimidazole) Membranes[J]. J. Electrochem. Soc., 2004, 151(2): A304

[20]

Cho J, Blackwell J, Chvalun S N, et al. Structure of a Poly(2,5-benzimidazole)/ Phosphoric Acid Complex[J]. J. Polym. Sci. Part B-Polym. Phys., 2004, 42(13): 2576-2585.

[21]

Dong F, Li Z, Wang S, et al. Synthesis and Characteristics of Proton-conducting Membranes Based on Cerium Sulfophenyl Phosphate and Poly (2, 5-benzimidazole) by Hot-pressing Method[J]. Int. J. Hydrogen Energy, 2011, 36(17): 11068-11074.

[22]

Sen U, Usta H, Acar O, et al. Enhancement of Anhydrous Proton Conductivity of Poly(vinylphosphonic acid)-Poly(2,5-benzimidazole) Membranes via In Situ Polymerization[J]. Macromol. Chem. Phys., 2015, 216(1): 106-112.

[23]

Yang J, He R, Che Q, et al. A Copolymer of Poly[2,2'-(m-phenylene)-5,5'-bibenzimidazole] and Poly(2,5-benzimidazole) for High-temperature Proton-conducting Membranes[J]. Polym. Int., 2010, 59(12): 1695-1700.

[24]

Kim S-K, Ko T, Choi S-W, et al. Durable Cross-linked Copolymer Membranes Based on Poly(benzoxazine) and Poly(2,5-benzimidazole) for Use in Fuel Cells at Elevated Temperatures[J]. J. Mater Chem., 2012, 22(15): 7194-7205.

[25]

Linlin M, Mishra A K, Kim N H, et al. Poly(2,5-benzimidazole)–silica Nanocomposite Membranes for High Temperature Proton Exchange Membrane Fuel Cell[J]. J.Membr. Sci., 2012, 411-412: 91-98.

[26]

Mishra A K, Kim N H, Lee J H. Effects of Ionic Liquid-functionalized Mesoporous Silica on the Proton Conductivity of Acid-doped Poly(2,5-benzimidazole) Composite Membranes for High-temperature Fuel Cells[J]. J.Membr. Sci., 2014, 449: 136-145.

[27]

Aili D, Allward T, Alfaro S M, et al. Polybenzimidazole and Sulfonated Polyhedral oligosilsesquioxane Composite Membranes for High Temperature Polymer Electrolyte Membrane Fuel Cells[J]. Electrochim. Acta, 2014, 140: 182-190.

[28]

Fina A, Tabuani D, Frache A, et al. Polypropylene-polyhedral Oligomeric Silsesquioxanes (POSS) Nanocomposites[J]. Polymer., 2005, 46(19): 7855-7866.

[29]

Gupta D, Madhukar A, Choudhary V. Effect of Functionality of Polyhedral Oligomeric Silsesquioxane[POSS] on the Properties of Sulfonated Poly(ether ether ketone) [SPEEK] Based Hybrid Nanocomposite Proton Exchange Membranes for Fuel Cell Applications[J]. Int. J.Hydrogen Energy, 2013, 38(29): 12817-12829.

[30]

Pan H, Zhang Y, Pu H, et al. Organic-inorganic Hybrid Proton Exchange Membrane Based on Polyhedral Oligomeric Silsesquioxanes and Sulfonated Polyimides Containing Benzimidazole[J]. J. Power Sources, 2014, 263: 195-202.

[31]

Zhang F, Tu Z Y J, et al. Impregnation of Imidazole Functionalized Polyhedral Oligomeric Silsesquioxane in Polymer Electrolyte Membrane for Elevated Temperature Fuel Cells[J]. RSC ADV., 2013, 3(16): 5438

[32]

Chhabra P, Choudhary V. Polymer Nanocomposite Membranes Based on Sulfonated Poly(ether ether ketone) and Trisilanol Phenyl POSS for Fuel Cell Applications[J]. J. Appl. Polym. Sci., 2010, 118(5): 3013-3023.

[33]

Zhang X, Tay S W, Hong L, et al. In Situ Implantation of PolyPOSS Blocks in Nafion® Matrix to Promote its Performance in Direct Methanol Fuel Cell[J]. J. Membr. Sci., 2008, 320(1-2): 310-318.

[34]

Yen Y-C, Ye Y-S, Cheng C-C, et al. The Effect of Sulfonic Acid Groups Within a Polyhedral Oligomeric Silsesquioxane Containing Crosslinked Proton Exchange Membrane[J]. Polymer, 2010, 51(1): 84-91.

[35]

Zhang Y, Lee S, Yoonessi M, et al. Phenolic Resin-trisilanolphenyl Polyhedral Oligomeric Silsesquioxane (POSS) Hybrid Nanocomposites: Structure and Properties[J]. Polymer., 2006, 47(9): 2984-2996.

[36]

Krishnan P, Park J-S, Kim C-S. Performance of a Poly(2,5-benzimidazole) Membrane Based High Temperature PEM Fuel Cell in the Presence of Carbon Monoxide[J]. J. Power Sources, 2006, 159(2): 817-823.

[37]

Acar O, Sen U, Bozkurt A, et al. Proton Conducting Membranes Based on Poly(2,5-benzimidazole) (ABPBI)-Poly(vinylphosphonic acid) Blends for Fuel Cells[J]. Int. J. Hydrogen Energy, 2009, 34(6): 2724-2730.

[38]

Choi J, Harcup J, Yee A F, et al. Organic/inorganic Hybrid Composites from Cubic Silsesquioxanes[J]. J. Am. Chem. Soc., 2001, 123(46): 11420-11430.

[39]

Liu Y R, Huang Y D, Liu L. Effects of TriSilanolIsobutyl-POSS on Thermal Stability of Methylsilicone Resin[J]. Polym.Degrad. Stabil., 2006, 91(11): 2731-2738.

[40]

Asensio J. Proton-conducting Membranes Based on Poly(2,5-benzimidazole) (ABPBI) and Phosphoric Acid Prepared by Direct Acid Casting[J]. J. Membr. Sci., 2004, 241(1): 89-93.

[41]

Li Q F, Jensen J O, Savinell R F, et al. High Temperature Proton Exchange Membranes Based on Polybenzimidazoles for Fuel Cells[J]. Prog. Polym. Sci., 2009, 34(5): 449-477.

[42]

Ma Y. The Fundamental Studies of Polybenzimidazole/Phosphoric Acid Polymer Elelctrolyte for Fuel Cells[D]. 2004 Ohio: Case Western Reserve University.

AI Summary AI Mindmap
PDF

146

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/