Synthesis and electrochemical behaviors of α-MoO3 nanobelts/carbon nanotubes composites for lithium ion batteries

Zhiheng Zhuang , Chao Yang , Yueli Shi , Yongli Cui

Journal of Wuhan University of Technology Materials Science Edition ›› 2018, Vol. 33 ›› Issue (1) : 73 -77.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2018, Vol. 33 ›› Issue (1) : 73 -77. DOI: 10.1007/s11595-018-1788-x
Article

Synthesis and electrochemical behaviors of α-MoO3 nanobelts/carbon nanotubes composites for lithium ion batteries

Author information +
History +
PDF

Abstract

α-MoO3 nanobelts/carbon nanotubes (CNTs) composites were synthesized by simple hydrothermal method followed by CNTs incorporating, and characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). Cyclic voltammogram (CV), electrochemical impedance spectroscopy (EIS), and galvanostatic charge/discharge testing techniques were employed to evaluate the electrochemical behaviors of α-MoO3 nanobelts /CNTs composites. The results exhibited that compared to bare α-MoO3 nanobelts, the α-MoO3 nanobelts/CNTs composites have better electrochemical performances as cathode materials for lithium ion battery, maintaining a reversible specific capacity of 222.2 mAh/g at 0.3 C after 50 cycles, and 74.1% retention of the first reversible capacity. In addition, the Rct value of the α-MoO3 nanobelts/ CNTs is 13 Ω, much lower than 66 Ω of the bare α-MoO3 nanobelts. The better electrochemical performances of the α-MoO3 nanobelts /CNTs composites can be attributed to the effects of the high conductive CNTs network.

Keywords

α-MoO3 nanobelts / carbon nanotubes / composite / cycling performance / electrochemical impedance spectroscopy

Cite this article

Download citation ▾
Zhiheng Zhuang, Chao Yang, Yueli Shi, Yongli Cui. Synthesis and electrochemical behaviors of α-MoO3 nanobelts/carbon nanotubes composites for lithium ion batteries. Journal of Wuhan University of Technology Materials Science Edition, 2018, 33(1): 73-77 DOI:10.1007/s11595-018-1788-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Radhakrishnan R, Reed C, Oyama S T. Variability in the Structure of Supported MoO3 Catalysts: Studies Using Raman and X-ray Absorption Spectroscopy with ab Initio Calculations[J]. J. Phys. Chem. B, 2001, 105(36): 8519-8530.

[2]

Taurino A M, Forleo A, Francioso L, et al. Synthesis, Electrical Characterization, and Gas Sensing Properties of Molybdenum Oxide Nanorods[J]. Appl. Phys. Lett., 2006, 88(15): 15211-15213.

[3]

Jung Y S, Lee S, Ahn D, et al. Electrochemical Reactivity of Ballmilled MoO3-y as Anode Materials for Lithium-Ion Batteries[J]. J. Power Sources, 2009, 188(1): 286-291.

[4]

Wang J, Rose K C, Lieber C M. Load-Independent Friction: MoO3 Nanocrystal Lubricants[J]. J. Phys Chem B, 1999, 103(40): 8405-8409.

[5]

Spahr M E, Novák P, Haas O, et al. Electrochemical Insertion of Lithium, Sodium, and Magnesium in Molybdenum(VI) Oxide[J]. J. Power Sources, 1995, 54(2): 346-351.

[6]

Zakharova G S, Täschner C, Volkov V L, et al. MoO3-d Nanorods: Synthesis, Characterization and Magnetic Properties[J]. Solid State Sci., 2007, 9(11): 1028-1032.

[7]

Li H, Balaya P, Maier J. Li-Storage via Heterogeneous Reaction in Selected Binary Metal Fluorides and Oxides[J]. J. Electrochem. Soc., 2004, 151(11): A1878-A1885.

[8]

Maier J. Nanoionics: Ion Ttransport and Electrochemical Storage in Confined Systems[J]. Nat. Mater., 2005, 4: 805-815.

[9]

Hu Y S, Kienle L, Guo Y G, et al. High Lithium Electroactivity of Nanometer-Sized Rutile TiO2[J]. Adv. Mater., 2006, 18(11): 1421-1426.

[10]

Leroux F, Nazar L F. Uptake of Lithium by Layered Molybdenum Oxide and Its Tin Exchanged Derivatives: High Volumetric Capacity Materials[J]. Solid State Ionics, 2000, 133(1-2): 37-50.

[11]

Leroux F, Goward G R, Power W P, et al. Understanding the Nature of Low-Potential Li Uptake into High Volumetric Capacity Molybdenum Oxides[J]. Electrochem. Solid-State Lett., 1998, 1(6): 255-258.

[12]

Lee S H, Kim Y H, Deshpande R, et al. Reversible Lithium-Ion Insertion in Molybdenum Oxide Nanoparticles[J]. Adv. Mater., 2008, 20: 3627-3632.

[13]

Lee S H, Deshpande R, Benhammou D, et al. Metal Oxide Nanoparticles for Advanced Energy Applications[J]. Thin Solid Films, 2009, 517(12): 3591-3595.

[14]

Takahashi T, Esaka T, Iwahara H. Oxide Ion Conduction in the Sintered Oxides of MoO3-Doped Bi2O3[J]. J. Appl. Electrochem., 1977, 7: 31-35.

[15]

Hassan M F, Guo Z P, Chen Z, et al. Carbon-Coated MoO3 Nanobelts as Anode Materials for Lithium-Ion Batteries[J]. J. Power Sources, 2010, 195: 2372-2376.

[16]

Yang L C, Gao Q S, Tang Y, et al. MoO2 Synthesized by Reduction of MoO3 with Ethanol Vapor as an Anode Material with Good Rate Capability for the Lithium Ion Battery[J]. J. Power Sources, 2008, 179(1): 357-360.

[17]

Ito S, Nakaoka K, Kawamura A, et al. Lithium Battery Having a Large Capacity Using Fe3O4 as a Cathode Material[J]. J. Power Sources, 2005, 146(1-2): 319-322.

[18]

Feng C Q, Gao H, Zhang C F, et al. Synthesis and Electrochemical Properties of MoO3/C Nanocomposite[J]. Electrochim. Acta, 2013, 93: 101-106.

[19]

Brezesinski T W J, Tolbert S H, et al. Ordered Mesoporous a-MoO3 with Iso-Oriented Nanocrystalline Walls for Thin-Film Pseudocapacito[J]. Nat. Mater., 2010, 9: 146-151.

[20]

Mendoza-Sánchez B, Grant P S. Charge Storage Properties of a a-MoO3/Carboxyl-Functionalized Single-Walled Carbon Nanotube Composite Electrode in a Li Ion Electrolyte[J]. Electrochim Acta, 2013, 98: 294-302.

[21]

Iriyama Y, Abe T, Inaba M, et al. Transmission Electron Microscopy (TEM) Analysis of Two-Phase Reaction in Electrochemical Lithium Insertion within a-MoO3[J]. Solid State Ionics, 2000, 135(1-4): 95-100.

[22]

Tsumura T, Inagaki M. Lithium Insertion/Extraction Reaction on Crystalline MoO3[J]. Solid State Ionics, 1997, 104(3-4): 183-189.

[23]

Swiatowska-Mrowiecka J, Diesbach S D, Maurice V, et al. Li-Ion Intercalation in Thermal Oxide Thin Films of MoO3 as Studied by XPS, RBS, and NRA[J]. J. Phys. Chem. C, 2008, 112(29): 11050-11058.

AI Summary AI Mindmap
PDF

113

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/