Wetting behavior of graphite and CFC composites by Cu-Ti compacts

Ke Wang , Yangwu Mao , Quanrong Deng , Dunwei Nie , Domenico Mombello

Journal of Wuhan University of Technology Materials Science Edition ›› 2018, Vol. 33 ›› Issue (1) : 35 -42.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2018, Vol. 33 ›› Issue (1) : 35 -42. DOI: 10.1007/s11595-018-1782-3
Article

Wetting behavior of graphite and CFC composites by Cu-Ti compacts

Author information +
History +
PDF

Abstract

The wetting behavior of Cu-Ti powder compacts with 22 wt % Ti and 50 wt % Ti on carbon materials, including graphite and carbon fiber reinforced carbon composites (CFC), has been investigated in a vacuum using the sessile drop method. The equilibrium contact angles of Cu-22Ti (containing 22 wt% Ti) on the graphite and the CFC substrates at 1 253 K are 32° and 26°, respectively, whereas the equilibrium contact angle of 9° is obtained for Cu-50Ti (containing 50 wt% Ti) on both the graphite and the CFC substrates at 1 303 K. Microstructural analysis of the wetting samples shows that a thin TiC reaction layer is developed at the interfacial area and Ti-Cu intermetallic compounds are formed over the reaction layer. The investigation on the spreading kinetics of Cu-Ti compacts on carbon materials substrates at fixed temperatures reveals that the spreading is controlled by the interfacial reactions in the first stage and then by the diffusion of the active Ti from the drop bulk to the triple line in the later stage. The spreading is promoted by the intense reaction at higher Ti concentrations.

Keywords

joining / wetting / interfaces / wetting / carbon materials

Cite this article

Download citation ▾
Ke Wang, Yangwu Mao, Quanrong Deng, Dunwei Nie, Domenico Mombello. Wetting behavior of graphite and CFC composites by Cu-Ti compacts. Journal of Wuhan University of Technology Materials Science Edition, 2018, 33(1): 35-42 DOI:10.1007/s11595-018-1782-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Zhang J, Wang T, Liu C, et al. Effect of Brazing Temperature on Microstructure and Mechanical Properties of Graphite/Copper Joints[J]. Mater. Sci. Eng. A, 2014, 594: 26-31.

[2]

Appendino P, Ferraris M, Casalegno V, et al. Proposal for a New Technique to Join CFC Composites to Copper[J]. J. Nucl. Mater., 2006, 348(1-2): 102-107.

[3]

Mao Y, Yu S, Zhang Y, et al. Microstructure Analysis of Graphite/Cu Joints Brazed with (Cu-50TiH2)+B Composite Filler[J]. Fusion Eng. Des., 2015, 100: 152-158.

[4]

Zhang H, Liu Y, Zhao X, et al. Preparation and Arc Erosion Resistance of Cf/Cu Composite by Vacuum Melting Infiltration[J]. J. Wuhan Univ. Technol.-Mater. Sci. Ed., 2014, 29(5): 1039-1043.

[5]

Salvo M, Casalegno V, Rizzo S, et al. One-step Brazing Process to Join CFC Composites to Copper and Copper Alloy[J]. J. Nucl. Mater., 2008, 374(1-2): 69-74.

[6]

Li J. Kinetics of Wetting and Spreading of Cu-Ti Alloys on Alumina and Glassy Carbon Substrates[J]. J. Mater. Sci. Lett., 1992, 11(23): 1551-1554.

[7]

Casalegno V, Salvo M, Ferraris M. Surface Modification of Carbon/ Carbon Composites to Improve Their Wettability by Copper[J]. Carbon, 2012, 50(6): 2296-2306.

[8]

Song J, Guo Q, Gao X, et al. Mo2C Intermediate Layers for the Wetting and Infiltration of Graphite Foams by Liquid Copper[J]. Carbon, 2011, 49(10): 3165-3170.

[9]

Matsunaga K, Ikuhara Y, Jung Y C, et al. Chemical Bonding States at Copper/Graphite Interfaces with Additional Elements[J]. J. Ceram. Soc. Jpn., 2005, 113(8): 540-542.

[10]

Singh M, Ohji T, Asthana R, et al. Ceramic Integration and Joining Technologies: From Macro to Nanoscale[M]. 2011 New Jersey: John Wiley & Sons, Inc.

[11]

Mortimer D A, Nicholas M. The Wetting of Carbon and Carbides by Copper Alloys[J]. J. Mater. Sci., 1973, 8(5): 640-648.

[12]

Sobczak N, Sobczak J, Rohatgi P, et al. Interaction between Ti or Cr Containing Copper Alloys and Porous Graphite Substrate[C]. Cracow, Poland: Proc. 2nd Int. Conf., 1997 145-152.

[13]

Mao Y, Li S, Pan Y. Wetting Behavior of Graphite by Ti-78Cu and Ti-50Cu Alloys[J]. Int. J. Mod. Phys. B, 2010, 24(15-16): 3029-3034.

[14]

Hsieh Y C, Lin S T. Microstructural Development of Cu–Sn–Ti Alloys on Graphite[J]. J. Alloys. Comp., 2008, 466(1-2): 126-132.

[15]

Yang L, Shen P, Lin Q, et al. Wetting of Porous Graphite by Cu-Ti Alloys at 1373 K[J]. Mater. Chem. Phys., 2010, 124(1): 499-503.

[16]

Eustathopoulos N, Nicholas M G, Drevet B. Wettability at High Temperatures[M]. 1999 Kidlington: Elsevier.

[17]

Asthana R, Singh M, Sobczak N. Wetting Behavior and Interfacial Microstructure of Palladium and Silver-Based Braze Alloys with C–C and SiC–SiC Composites[J]. J. Mater. Sci., 2010, 45(16): 4276-4290.

[18]

Yu Q, Zhang F, Zhang X, et al. Effect of the Ti Content of Cu-Ti Alloy on the Wettability of C/C Composites[J]. Mater. Sci. Eng. Powder Metall., 2013, 18(2): 224-229.

[19]

Yang L, Shen P, Lin Q, et al. Effect of Cr on the Wetting in Cu/Graphite System[J]. Appl. Surf. Sci., 2011, 257(14): 6276-6281.

[20]

Li J. Effects of Sintering Atmospheres and Non-Stoichiometry on Wetting and Interfacial Bonding of Titania with Liquid Copper[J]. Mater. Lett., 2008, 62(14): 2110-2113.

[21]

Mao Y, Yu S, Deng Q, et al. In-situ Synthesis of Ceramic Reinforcements for Carbon/CuCrZr Joints Brazed with Composite Fillers[J]. J. Mater. Eng. Perform., 2016, 25(12): 5262-5268.

[22]

Mao Y, Wang S, Peng L, et al. Brazing of Graphite to Cu with Cu-50TiH2 + C Composite Filler[J]. J. Mater. Sci., 2016, 51(4): 1671-1679.

[23]

Dezellus O, Hodaj F, Eustathopoulos N. Chemical Reaction-Limited Spreading: the Triple Line Velocity Versus Contact Angle Relation[J]. Acta Mater., 2002, 50(19): 4741-4753.

[24]

Dezellus O, Hodaj F, Eustathopoulos N. Progress in Modelling of Chemical-Reaction Limited Wetting[J]. J. Eur. Ceram. Soc., 2003, 23(15): 2797-2803.

[25]

Hodaj F, Dezellus O, Barbier J N, et al. Diffusion-Limited Reactive Wetting: Effect of Interfacial Reaction Behind the Advancing Triple Line[J]. J. Mater. Sci., 2007, 42(19): 8071-8082.

AI Summary AI Mindmap
PDF

142

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/