Structures and properties of La0.8Sr0.2MnO3+σ-z SBA-15 (z=0, 1, 2, 4) perovskite catalysts

Xuehui Huang , Pengju Niu , Ming Li , Hui Liao , Xiaohui Shang

Journal of Wuhan University of Technology Materials Science Edition ›› 2018, Vol. 33 ›› Issue (1) : 23 -29.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2018, Vol. 33 ›› Issue (1) : 23 -29. DOI: 10.1007/s11595-018-1780-5
Article

Structures and properties of La0.8Sr0.2MnO3+σ-z SBA-15 (z=0, 1, 2, 4) perovskite catalysts

Author information +
History +
PDF

Abstract

Mesoporous La0.8Sr0.2MnO3+σ/z SBA-15 (z = 1, 2, 4) perovskite oxides were synthesized via hard-templating with ordered mesoporous silica SBA-15 as the template. The as-prepared samples were characterized by XRD, SEM, AFM, BET, and XPS and the catalytic activity was tested for CO oxidation. The wide-angle XRD patterns showed that La0.8Sr0.2MnO3+σ perovskite was formed. The SEM and AFM analyses exhibited that La0.8Sr0.2MnO3+σ by hard-templating method had much smaller particle size (18 nm) than that (40 nm) by the sol-gel method. The perovskite-type oxides La0.8Sr0.2MnO3+σ/z SBA-15 (z = 1, 2, 4) also displayed a higher BET surface area from 70 to 143.7 m2/g and a disordered mesostructure from nitrogen sorption analysis, as well as a small-angle XRD pattern. Moreover, the La0.8Sr0.2MnO3+σ/z SBA-15 (z = 1, 2, 4) perovskite exhibited a much higher activity in CO oxidation than the conventional La0.8Sr0.2MnO3+σ perovskite. Further analysis by the means of XPS techniques indicated that the existence of high content of Oads/Olatt species contributed to the high activity.

Keywords

hard-templating / sol-gel / perovskite catalyst / mesoporous structure / CO oxidation

Cite this article

Download citation ▾
Xuehui Huang, Pengju Niu, Ming Li, Hui Liao, Xiaohui Shang. Structures and properties of La0.8Sr0.2MnO3+σ-z SBA-15 (z=0, 1, 2, 4) perovskite catalysts. Journal of Wuhan University of Technology Materials Science Edition, 2018, 33(1): 23-29 DOI:10.1007/s11595-018-1780-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Eom H J, Jang J H, Lee D W, et al. Catalytic Combustion of Hydrogen over La1-xSrxCoO3 -s + Co3O4 and LaMn1-xCuxO3+s under Simulated MCFC Anode Off-gas Conditions[J]. Journal of Molecular Catalysis A Chemical, 2011, 349: 48-54.

[2]

Zhang J, Gong M, Cao Y, et al. Facile Synthesis of Well-Dispersed CeO2–CuOx Composite Hollow Spheres with Superior Catalytic Activity for CO Oxidation[J]. Rsc Advances, 2015, 5(115): 95133-95139.

[3]

Parida K M, Reddy K H, Martha S, et al. Fabrication of Nanocrystalline LaFeO3: An Efficient Sol-gel Auto-Combustion Assisted Visible Light Responsive Photocatalyst for Water Decomposition[J]. Fuel & Energy Abstracts, 2010, 35(22): 12161-12168.

[4]

Wang X, Liu D P, Song S Y, et al. Pt@CeO2 Multicore@Shell Self-Assembled Nanospheres: Clean Synthesis, Structure Optimization and Catalytic Applications[J]. Journal of the American Chemical Society, 2013, 135(42): 15864-15872.

[5]

Carrettin S, Concepcion P, Corma A, et al. Nanocrystalline CeO2, Increases the Activity of Au for CO Oxidation by Two Orders of Magnitude[J]. Angewandte Chemie International Edition, 2004, 116(19): 2592-2594.

[6]

Ziaei-Azad H, Khodadadi A, Esmaeilnejad-Ahranjani P, et al. Effects of Pd on Enhancement of Oxidation Activity of LaBO3, (B = Mn, Fe, Co and Ni) Pervoskite Catalysts for Pollution Abatement From Natural Gas Fueled Vehicles[J]. Applied Catalysis B Environmental, 2011, 102(1-2): 62-70.

[7]

Zhang X, Li H J, Li Y, et al. Structural Properties and Catalytic Activity of Sr-Substituted LaFeO3, Perovskite[J]. Chinese Journal of Catalysis, 2012, 33(7-8): 1109-1114.

[8]

Zhu L L, Lu G Z, Wang Y Q, et al. Effects of Preparation Methods on the Catalytic Performance of LaMn0.8Mg0.2O3 Perovskite for Methane Combustion[J]. Chinese Journal of Catalysis, 2010, 31(8): 1006-1012.

[9]

Ponce S, Peña M A, Fierro J L G. Surface Properties and Catalytic Performance in Methane Combustion of Sr-Substituted Lanthanum Manganites[J]. Applied Catalysis B Environmental, 2000, 24(3-4): 193-205.

[10]

Jonker G H, Santen J H V. Ferromagnetic Compounds of Manganese with Perovskite Structure[J]. Physica, 1950, 16(3): 337-349.

[11]

Huang X H, Niu P J, Shang X H. Low Temperature Molten Salt Synthesis of Porous La1-xSrxMn0.8Fe0.2O3 (0 = x = 0.6) Microspheres with High Catalytic Activity for CO Oxidation[J]. Chinese Journal of Catalysis, 2016, 37(8): 1431-1439.

[12]

Wang Y, Cui X, Li Y, et al. A Simple Co-nanocasting Method to Synthesize High Surface Area Mesoporous LaCoO3 Oxides for CO and NO Oxidations[J]. Microporous & Mesoporous Materials, 2013, 176(176): 8-15.

[13]

Roy X, Maclachlan M. Coordination Chemistry: New Routes to Mesostructured Materials[J]. Chemistry-A European Journal, 2009, 15(27): 6552-6559.

[14]

Zhao X B, Chen F, You J, et al. The Synthesis of Mesoporous Ce1-xZrxO2 by Modified Evaporation-Induced Self-Assembly Method[J]. Journal of Materials Science, 2010, 45(13): 3563-3568.

[15]

Tiemann M. Repeated Templating[J]. Chemistry of Materials, 2008, 20(3): 961-971.

[16]

Deng J, Zhang L, Dai H, et al. In Situ Hydrothermally Synthesized Mesoporous LaCoO3/SBA-15 Catalysts: High Activity for the Complete Oxidation of Toluene and Ethyl Acetate[J]. Applied Catalysis A General, 2009, 352(1): 43-49.

[17]

Huang X H, Li M. Hard-Templating Synthesis of Mesopours La1-xSrxMnO3+ s Perovskite and Catalysis Activity in CO Oxidation[J]. Advanced Materials Research, 2011, 306-307: 1342-1349.

[18]

Huang X H, Shang X H, Niu P J. Surface Modification of SBA-15 and Its Effect on the Structure and Properties of Mesoporous La0.8Sr0.2CoO3[J]. Acta Phys. -Chim. Sin., 2017, 33(7): 1462-1473.

[19]

Sauer J, Marlow F, Spliethoff B, et al. Rare Earth Oxide Coating of the Walls of SBA-15[J]. Chemistry of Materials, 2002, 14: 217-224.

[20]

Vidal H, Bernal S, Baker R T, et al. Characterization of La2O3/SiO2 Mixed Oxide Catalyst Supports[J]. Journal of Catalysis, 1999, 183(1): 53-62.

[21]

Zhao Z X, Dai H X, Deng J G, et al. Three-dimensionally Ordered Macroporous La0.6Sr0.4FeO3-d: High-Efficiency Catalysts for the Oxidative Removal of Toluene[J]. Microporous & Mesoporous Materials, 2012, 163: 131-139.

[22]

Wang Y, Xie S, Deng J, et al. Morphologically Controlled Synthesis of Porous Spherical and Cubic LaMnO3 with High Activity for the Catalytic Removal of Toluene[J]. Acs Applied Materials & Interfaces, 2014, 6(20): 17394-17401.

[23]

Kim M G, Kim H S, Ha Y G, et al. High-Performance Solution-Processed Amorphous Zinc-Indium-Tin Oxide Thin-Film Transistors[J]. Journal of the American Chemical Society, 2010, 132(30): 10352-10364.

[24]

Bai B, Li J, Hao J, et al. 1D-MnO2, 2D-MnO2, and 3D-MnO2 for Low-Temperature Oxidation of Ethanol[J]. Applied Catalysis B Environmental, 2015, 164: 241-250.

[25]

Gao B, Deng J, Liu Y, et al. Mesoporous LaFeO3 Catalysts for the Oxidation of Toluene and Carbon Monoxide[J]. Chinese Journal of Catalysis, 2013, 34(12): 2223-2229.

[26]

Widmann D, Behm R J. Active Oxygen on a Au/TiO2, Catalyst: Formation, Stability, and CO Oxidation Activity[J]. Angewandte Chemie International Edition, 2011, 50(43): 10241-10245.

AI Summary AI Mindmap
PDF

111

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/