Heteropolyacid (H3PW12O40) supported MCM-41: An effective solid acid catalyst for the dehydration of glycerol to acrolein

Jianfei Ding , Tianlin Ma , Zhi Yun , Rong Shao

Journal of Wuhan University of Technology Materials Science Edition ›› 2017, Vol. 32 ›› Issue (6) : 1511 -1516.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2017, Vol. 32 ›› Issue (6) : 1511 -1516. DOI: 10.1007/s11595-017-1776-6
Organic Materials

Heteropolyacid (H3PW12O40) supported MCM-41: An effective solid acid catalyst for the dehydration of glycerol to acrolein

Author information +
History +
PDF

Abstract

The gas-phase dehydration of glycerol was conducted over HPW/MCM-41 catalysts, which were prepared by impregnation of different amount of H3PW12O40 (HPW) on the MCM-41 support. The samples were characterized by XRD, N2 physisorption, FTIR, NH3-TPD, and pyridine-FTIR measurements. N2 physisorption results suggested that the uniform framework of MCM-41 could still be well maintained after modified with HPW. Pyridine-FTIR experiments indicate that HPW modified MCM-41 can generate rich Brønsted acid sites. Moreover, Brønsted acid sites facilitated to improve acrolein selectivity. Under the optimized reaction conditions: 40wt% HPW loading, 20% glycerol concentration, and 320 °C reaction temperature, the glycerol conversion and acrolein selectivity reach 85% and 80%, respectively.

Keywords

H3PW12O40/MCM-41 / glycerol / dehydration / acrolein

Cite this article

Download citation ▾
Jianfei Ding, Tianlin Ma, Zhi Yun, Rong Shao. Heteropolyacid (H3PW12O40) supported MCM-41: An effective solid acid catalyst for the dehydration of glycerol to acrolein. Journal of Wuhan University of Technology Materials Science Edition, 2017, 32(6): 1511-1516 DOI:10.1007/s11595-017-1776-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Gu YL, Cui NY, Yu QJ, et al. Study on the Influence of Channel Structure Properties in the Dehydration of Glycerol to Acrolein over H-zeolite Catalysts[J]. Appl. Catal. A: Gen., 2012, 429–430: 9-16.

[2]

Katryniok B, Paul S, Bellière-Baca V, et al. Glycerol Dehydration to Acrolein in the Context of New Uses of Glycerol[J]. Green. Chem., 2010, 12: 2 079-2 098.

[3]

Okuhara T. Microporous Heteropoly Compounds and Their Shape Selective Catalysis[J]. Appl. Catal. A: Gen., 2003, 256(1-2): 213-224.

[4]

Holclajtner-Antunović I, Mioč UB, Todorović M, et al. Characterization of Potassium Salts of 12-tungstophosphoric Acid[J]. Mater. Res. Bull., 2010, 45(11): 1 679-1 684.

[5]

Chai SH, Wang HP, Liang Y, et al. Sustainable Production of Acrolein: Gas-Phase Dehydration of Glycerol over 12-tungstophosphoric Acid Supported on ZrO2 and SiO2[J]. Green. Chem., 2008, 10: 1 087-1 093.

[6]

Tropecêlo AI, Casimiro MH, Fonseca IM, et al. Esterification of Free Fatty Acids to Biodiesel over Heteropolyacids Immobilized on Mesoporous Silica[J]. Appl. Catal. A: Gen., 2010, 390(1-2): 183-189.

[7]

Ferreira P, Fonseca IM, Ramos AM, et al. Acetylation of Glycerol over Heteropolyacids Supported on Activated Carbon[J]. Catal. Comm., 2011, 12(7): 573-576.

[8]

Kim YC, Jeong JY, Hwang JY, et al. Incorporation of Heteropoly Acid, Tungstophosphoric Acid within MCM-41 via Impregnation and Direct Synthesis Methods for the Fabrication of Composite Membrane of DMFC[J]. J. Membrane. Sci., 2008, 325(1): 252-261.

[9]

Wang LJ, Li D, Wang R, et al. Study on Humidity Sensing Property Based on Li-doped Mesoporous Silica MCM-41[J]. Sensor. Actuat. B: Chem., 2008, 133(2): 622-627.

[10]

Beck JS, Vartuli JC, Roth WJ, et al. A New Family of Mesoporous Molecular Sieves Prepared with Liquid Crystal Templates[J]. J. Am. Chem. Soc., 1992, 114(27): 10 834-10 843.

[11]

Braga PRS, Costa AA, de Freitas EF, et al. Intramolecular Cyclization of (+)-Citronellal using Supported 12-tungstophosphoric Acid on MCM-41[J]. J. Mol. Catal. A: Chem., 2012, 358: 99-105.

[12]

Liu Y, Xu L, Xu BB, et al. Toluene Alkylation with 1-octene over Supported Heteropoly Acids on MCM-41 Catalysts[J]. J. Mol. Catal. A: Chem., 2009, 297(2): 86-92.

[13]

Jalil PA, Al-Daous MA, Al-Arfaj ARA, et al. Characterization of Tungstophosphoric Acid Supported on MCM-41 Mesoporous Silica using n-hexane Cracking, Benzene Adsorption, and X-ray Diffraction[J]. Appl. Catal. A: Gen., 2001, 207(1-2): 159-171.

[14]

Kresge CT, Leonowicz ME, Roth WJ, et al. Ordered Mesoporous Molecular Sieves Synthesized by a Liquid-crystal Template Mechanism[J]. Nature, 1992, 359: 710-712.

[15]

Khder AERS, Hassan HMA, EI-Shall MS. Acid Catalyzed Organic Transformations by Heteropoly Tungstophosphoric Acid Supported on MCM-41[J]. Appl. Catal. A: Gen., 2012, 411–412: 77-86.

[16]

Pizzio LR, Vázquez PG, Cáceres CV, et al. Supported Keggin Type Heteropolycompounds for Ecofriendly Reactions[J]. Appl. Catal. A: Gen., 2003, 256(1-2): 125-139.

[17]

Poh NE, Nur H, Muhid MNM, et al. Sulphated AlMCM-41: Mesoporous Solid Brønsted Acid Catalyst for Dibenzoylation of Biphenyl[J]. Catal. Today, 2006, 114(2-3): 257-262.

[18]

Xia QH, Hidajat K, Kawi S. Structure, Acidity, and Catalytic Activity of Mesoporous Acid Catalysts for the Gas-Phase Synthesis of MTBE from MeOH and ButOH[J]. J. Catal., 2002, 209(2): 433-444.

AI Summary AI Mindmap
PDF

96

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/