Preparation and characterization of an intelligent multi-target tracking HA-RGD-CLB-QDs drug delivery system

Fengzheng Wu , Haixing Xu , Zhihua Zhu , Xin Li , Yahui Lü , Tian Ma , Xinjie Cai , Rui Li , Xiaobing Wang , Peihu Xu

Journal of Wuhan University of Technology Materials Science Edition ›› 2017, Vol. 32 ›› Issue (6) : 1493 -1502.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2017, Vol. 32 ›› Issue (6) : 1493 -1502. DOI: 10.1007/s11595-017-1774-8
Biomaterials

Preparation and characterization of an intelligent multi-target tracking HA-RGD-CLB-QDs drug delivery system

Author information +
History +
PDF

Abstract

This work aimed to develop an intelligent multi-target tracking hyaluronic acid-RGD-chlorambucil-quantum dots (HA-RGD-CLB-QDs) drug delivery system. After deacetylated, hyaluronic acid was reacted with anticancer drug chlorambucil, RGD, and quantum dots to obtain the HA-RGD-CLB-QDs drug delivery system. The characterization by FT-IR, 1H NMR, TEM, XPS, DLS, and UV-vis absorption and fluorescence spectra show that the system is successfully constructed with an average particle size of about 70 nm. The results of the drug release profile show that that the system has a pH and enzyme sensitive controlled release behaviour. Moreover, cellular uptake and toxicity results show that the system has an ideal dual receptor-mediated endocytosis pathway that significantly enhances the efficacy of CLB tumor therapy and has a lower toxicity to normal cells.The system shows the potential application as a carrier for cancer therapy.

Keywords

drug delivery system / hyaluronic acid / quantum dots / RGD / dual-receptor

Cite this article

Download citation ▾
Fengzheng Wu, Haixing Xu, Zhihua Zhu, Xin Li, Yahui Lü, Tian Ma, Xinjie Cai, Rui Li, Xiaobing Wang, Peihu Xu. Preparation and characterization of an intelligent multi-target tracking HA-RGD-CLB-QDs drug delivery system. Journal of Wuhan University of Technology Materials Science Edition, 2017, 32(6): 1493-1502 DOI:10.1007/s11595-017-1774-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ward C, Langdon SP, Mullen P, et al. New Strategies for Targeting the Hypoxic Tumor Microenvironment in Breast Cancer[J]. Cancer. Treat. Rev., 2013, 39(2): 171-179.

[2]

Sunters A, Springer CJ, Bagshawe KD, et al. The Cytotoxicity, DNA Cross Linking Ability and DNA Sequence Selectivity of the Aniline Mustards Melphalan, Chlorambucil and 4-[bis(2-chloroethyl) Amino] Benzoic Acid[J]. Biochem. Pharmacol., 1992, 44(1): 59-64.

[3]

Davies ID, Allanson JP, Causon RC. Rapid Determination of the Anti-cancer Drug Hlorambucil (LeukeranE) and Its Phenyl Acetic Acid Mustard Metabolite in Human Serum and Plasma by Automated Solid-phase Extraction and Liquid Chromatography-tandem Mass Spectrometry[J]. J. Chromatogr. B Biomed. Sci. Appl., 1999, 732(1): 173-184.

[4]

Gupta A, Saha P, Descôteaux C, et al. Design, Synthesis and Biological Evaluation of Estradiol-chlorambucil Hybrids as Anticancer Agents[J]. Bioorg. Med. Chem. Lett., 2010, 20(5): 1 614-1 618.

[5]

Jiang D, Liang J, Noble PW. Hyaluronan as An Immune Regulator in Human Diseases[J]. Physio. Rev., 2011, 91(1): 221-264.

[6]

Ahrens T, Assmann V, Fieber C, et al. CD44 is the Principal Mediator of Hyaluronic-acid-induced Melanoma Cell Proliferation[J]. J. Invest. Dermatol., 2001, 116(1): 93-101.

[7]

Banerji S, Ni J, Wang SX, et al. LYVE-1, A New Homologue of the CD44 Glycoprotein, is a Lymph-specific Receptor for Hyaluronan[J]. J.Cell Biol., 1999, 144(3): 789-801.

[8]

Turley EA, Austen L, Vandeligt K, et al. Hyaluronan and a Cellassociated Hyaluronan Binding Protein Regulate the Locomotion of Ras-transformed Cells[J]. J. Cell Biol., 1991, 112(5): 1 041-1 047.

[9]

Ghosh SC, Alpay SN, Klostergaard J. CD44: A Validated Target for Improved Delivery of Cancer Therapeutics[J]. Expert Opin. Ther. Targets, 2012, 16(7): 635-650.

[10]

Sonia AQ, Ana G, Carmen RL. Microspheres Loaded with Polysaccharide Nanoparticles for Pulmonary Delivery: Preparation, Structure and Surface Analysis[J]. Carbohydr. Polym., 2011, 86(1): 25-34.

[11]

Hook M, Riesenfeld J, Lindahl U. N-[3H]Acetyl-labeling, a Convenient Method for Radiolabeling of Glycosaminoglycans[J]. Anal. Biochem., 1982, 119(2): 236-245.

[12]

Dahl LB, Laurent TC, Smedsrod B. Preparation of Biologically Intact Radioiodinated Hyaluronan of High Specific Radioactivity: Coupling of 125I-tyramine-cellobiose to Amino Groups after Partial N-deacetylation[J]. Anal. Biochem., 1988, 175(2): 397-407.

[13]

Schroder C, Schumacher U, Muller V, et al. The Transcription Factor Fra-2 Promotes Mammary Tumour Progression by Changing the Adhesive Properties of Breast Cancer Cells[J]. Eur. J. Cancer., 2010, 46(9): 1 650-1 660.

[14]

Choi N, Kim SM, Hong KS, et al. The Use of the Fusion Protein RGDHAS-TIMP2 as a Tumor Targeting Imaging Probe for SPECT and PET[J]. Biomaterials, 2011, 32(29): 7 151-7 158.

[15]

Kluza E, Jacobs I, Hectors SJ, et al. Dual-targeting of α v β 3 and Galectin-1 Improves the Specificity of Paramagnetic/Fluorescent Liposomes to Tumor Endothelium in Vivo[J]. J. Control Release, 2012, 158(2): 207-214.

[16]

Tian HY, Lin L, Chen J, et al. RGD Targeting Hyaluronic Acid Coating System for PEI-PBLG Polycation Gene Carriers[J]. J. Control Release, 2011, 155(1): 47-53.

[17]

Ouasti S, Kingham PJ, Terenghi G, et al. The CD44/Integrins Interplay and the Significance of Receptor Binding and Re-presentation in the Uptake of RGD-functionalized Hyaluronic Acid[J]. Biomaterials, 2012, 33(4): 1 120-1 134.

[18]

Mocatta D, Cohen G, Schattner J, et al. Heavily Doped Semiconductor Nanocrystal Quantum Dots[J]. Science, 2011, 332(6025): 77-81.

[19]

Stinaff EA, Scheibner M, Bracker AS, et al. Optical Signatures of Coupled Quantum Dots[J]. Science, 2006, 311(5761): 636-639.

[20]

Rogach AL, Kornowski A, Eychmuller A, et al. Synthesis and Characterization of a Size Series of Extremely Small Thiol-Stabilized CdSe Nanocrystals[J]. J. Phys. Chem. B, 1999, 30(27): 1 772-1 778.

[21]

Dai XL, Zhang ZX, Jin YZ, et al. Solution-processed, Highperformance Lightemitting Diodes based on Quantum Dots[J]. Nature, 2014, 515(7525): 96-99.

[22]

Yu Y, Lai Y, Zheng XL, et al. Synthesis of Functionalized CdTe/CdS QDs for Spectrofluorimetric Detection of BSA[J]. Spectrochim Acta A Mol. Biomol. Spectrosc., 2007, 68(5): 1 356-1 361.

[23]

Su YY, He Y, Lu HT, et al. The Cytotoxicity of Cadmium Based, Aqueous Phase-Synthesized, Quantum Dots and Its Modulation by Surface Coating[J]. Biomaterials, 2009, 30(1): 19-25.

[24]

Bhang SH, Won N, Lee TJ, et al. Hyaluronic Acid Quantum Dot Conjugates for in vivo Lymphatic Vessel Imaging[J]. ACS Nano., 1936, 3(6): 1 389-1 398.

[25]

Yan CM, Tang FQ, Li LL, et al. Synthesis of Aqueous CdTe/CdS/ ZnS Core/Shell/Shell Quantum Dots by a Chemical Aerosol flow Method[J]. Nanoscale Res. Lett., 2010, 5(1): 189-194.

[26]

Crescenzi V, Francescangeli A, Renier D, et al. New Cross-Linked and Sulfated Derivatives of Partially Deacetylated Hyaluronan: Synthesis and Preliminary Characterization[J]. Biopolymers, 2002, 64(2): 86-94.

[27]

Bauvois B. New Facets of Matrix Metaloproteinases MMP-2 and MMP-9 as Cell Surface Transducers: Outside-in Signaling and Relationship to Tumor Progression[J]. Biochim. Biophys. Acta, 2012, 1825(1): 29-36.

[28]

Xu HX, Wang ZH, Li Y, et al. Preparation and Characterization of a Dualreceptor Mesoporous Silica Nanoparticle-hyaluronic Acid-RGD Peptide Targeting Drug Delivery System[J]. RSC Advances, 2016, 6(46): 40 427-40 435.

[29]

Kim J, Park K, Hahn SK. Effect of Hyaluronic Acid Molecular Weight on the Morphology of Quantum Dot-hyaluronic Acid Conjugates[J]. Int. J. Biol. Macromol., 2008, 42(1): 41-45.

[30]

Lee H, Choi S, Park TG. Direct Visualization of Hyaluronic Acid polymer Chain by Self-assembled One-dimensional Array of Gold Nanoparticles Macromolecules[J]. Macromolecules, 2005, 39(1): 23-25.

[31]

Taniguchi S, Green M, Rizvi SB. The One-pot Synthesis of Core/Shell/ Shell CdTe/CdSe/ZnSe Quantum Dots in Aqueous Media Forin Vivo Deep Tissue Imaging[J]. J. Mater. Chem., 2011, 21(9): 2 877-2 882.

[32]

He Y, Lu HT, Sai LM, et al. Microwave Synthesis of Water Dispersed CdTe/CdS/ZnS Core-shell-shell Quantum Dots with Excellent Photostability and Biocompatibility[J]. Adv. Mater., 2008, 20(18): 3 416-3 421.

[33]

Aharoni A, Popov A, Banin U. Synthesis of InAs/CdSe/ZnSe Core/Shell1/Shell2 Structures with Bright and Stable Near-Infrared Fluorescence[J]. J. Am. Chem. Soc., 2006, 128(1): 257-264.

[34]

Peng H, Zhang LJ, Soeller C, et al. Preparation of Water-soluble CdTe/CdS Core/Shell Quantum Dots with Enhanced Photostability[J]. J. Lumin., 2007, 127(2): 721-726.

[35]

Dabbousi BO, Rodriguez-Viejo J, Mikulec FV, et al. (CdSe)ZnS Coreshell Quantum Dots: Synthesis and Characterization of a Size Series of Highly Luminescent Nanocrystallites[J]. J. Phys. Chem. B, 1998, 29(9): 9 463-9 475.

AI Summary AI Mindmap
PDF

113

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/