Crystallization behavior of polymer derived silicon carbide sintered through microwave heating technique

Jun Xiong , Qing Huang

Journal of Wuhan University of Technology Materials Science Edition ›› 2017, Vol. 32 ›› Issue (6) : 1368 -1373.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2017, Vol. 32 ›› Issue (6) : 1368 -1373. DOI: 10.1007/s11595-017-1754-z
Cementitious Materials

Crystallization behavior of polymer derived silicon carbide sintered through microwave heating technique

Author information +
History +
PDF

Abstract

A self-crosslinkable liquid highly branched polycarbosilane (LHBPCS) with 5.07% vinyl group and a C/Si ratio of 1.33 was used as the precursor to prepare SiC ceramic material. Microwave heating technique and conventional heating method were applied for the heating treatment process. It was found that, compared with conventional heating method, microwave heating technique could enhance the crystallinity of SiC ceramic material with small grain size at much lower curing temperature and within shorter time. In addition, the SiO2 additive could lead to less α-SiC and excess carbon, but worsen the crystallinity of β-SiC in the final samples.

Keywords

liquid highly branched polycarbosilane / microwave heating / crystallization behavior / β-SiC

Cite this article

Download citation ▾
Jun Xiong, Qing Huang. Crystallization behavior of polymer derived silicon carbide sintered through microwave heating technique. Journal of Wuhan University of Technology Materials Science Edition, 2017, 32(6): 1368-1373 DOI:10.1007/s11595-017-1754-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Acheson EG. Carborundum: Its History, Manufacture and Uses[J]. J. Franklin. I., 1893, 136(4): 279-289.

[2]

Harris GL. Properties of Silicon Carbide[M]. 1995

[3]

Klein S, Winterer M, Hahn H. Reduced-Pressure Chemical Vapor Synthesis of Nanocrystalline Silicon Carbide Powders[J]. Chem. Vapor. Depos., 1998, 4(4): 143-149.

[4]

Zhou Y, Hirao K, Toriyama M, et al. Very Rapid Densification of Nanometer Silicon Carbide Powder by Pulse Electric Current Sintering[J]. J. Am. Ceram. Soc., 2000, 83(3): 654-656.

[5]

Martin HP, Ecke R, Müller E. Synthesis of Nanocrystalline Silicon Carbide Powder by Carbothermal Reduction[J]. J. Eur. Ceram. Soc., 1998, 18(12): 1 737-1 742.

[6]

Yajima S, Hayashi J, Omori M. Continuous Silicon Carbide Fiber of High Tensile Strength[J]. Chem. Lett., 1975, 4(9): 931-934.

[7]

Yajima S, Okamura K, Hayashi J, et al. Synthesis of Continuous SiC Fibers with High Tensile Strength[J]. J. Am. Ceram. Soc., 1976, 59(7-8): 324-327.

[8]

Yajima S, Hasegawa Y, Okamura K, et al. Development of High Tensile Strength Silicon Carbide Fibre Using an Organosilicon Polymer Precursor[J]. Nature, 1978, 273(5663): 525-527.

[9]

Riedel R. Silicon-based Polymer-derived Ceramics: Synthesis Properties and Applications - A Review[J]. J. Ceram. Soc. Jpn., 2006, 114(1330): 425-444.

[10]

Colombo P, Mera G, Riedel R, et al. Polymer-Derived Ceramics: 40 Years of Research and Innovation in Advanced Ceramics[J]. J. Am. Ceram. Soc., 2010, 93(7): 1 805-1 837.

[11]

Interrante L V, Rushkin I, Shen Q. Linear and Hyperbranched Polycarbosilanes with Si-CH2-Si Bridging Groups: A Synthetic Platform for the Construction of Novel Functional Polymeric Materials[J]. Appl. Organomet. Chem., 1998, 12(10-11): 695-705.

[12]

Yu Z, Li R, Zhan J, et al. Synthesis and Characterization of a Propargyl-substituted Polycarbosilane with High Ceramic Yield[J]. J. Appl. Polym. Sci., 2011, 121(6): 3 400-3 406.

[13]

Interrante LV, Jacobs JM, Sherwood W, et al. Fabrication and Properties of Fiber-and Particulate-reinforced SiC Matrix Composites Obtained with (A) HPCS as the Matrix Source[J]. Key. Eng. Mat., 1996, 127: 271-278.

[14]

Interrante LV, Moraes K, Liu Q, et al. Silicon-based Ceramics from Polymer Precursors[J]. Pure. Appl. Chem., 2002, 74(11): 2 111-2 117.

[15]

Fang Y, Huang M, Yu Z, et al. Synthesis, Characterization, and Pyrolytic Conversion of a Novel Liquid Polycarbosilane[J]. J. Am. Ceram. Soc., 2008, 91(10): 3 298-3 302.

[16]

Shan THA, Cozzens R. Microwave Curing of Silicon Carbide Ceramics from a Polycarbosilane Precursor[J]. Mat. Res. Soc. Symp. Proc., 1994, 347: 729.

[17]

Ramesh PD, Vaidhyanathan B, Ganguli M, et al. Synthesis of β-SiC Powder by Use of Microwave Radiation[J]. J. Mater. Res., 1994, 9(12): 3 025-3 027.

[18]

Ramesh PD, Brandon D, Schächter L. Use of Partially Oxidized SiC Particle Bed for Microwave Sintering of Low Loss Ceramics[J]. Mat. Sci. Eng. A-Struct., 1999, 266(1): 211-220.

[19]

Changhong D, Xianpeng Z, Jinsong Z, et al. The Synthesis of Ultrafine SiC Powder by the Microwave Heating Technique[J]. J. Mater. Sci., 1997, 32(9): 2 469-2 472.

[20]

Shinozaki S, Kinsman KR. Aspects of “One Dimensional Disorder” in Silicon Carbide[J]. Acta. Metall. Mater., 1978, 26(5): 769-776.

[21]

Heuer AH, Fryburg GA, Ogbuji LU, et al. β→α Transformation in Polycrystalline SiC: I, Microstructural Aspects[J]. J. Am. Ceram. Soc., 1978, 61(9-10): 406-412.

[22]

Mitchell TE, Ogbuji LU, Heuer AH. β→α Transformation in Polycrystalline SiC: II, Interfacial Energetics[J]. J. Am. Ceram. Soc., 1978, 61(9-10): 412-413.

[23]

Ogbuji LU, Mitchell TE, Heuer AH. The β→ α Transformation in Poly crystalline SiC: III, The Thickening of α Plates[J]. J. Am. Ceram. Soc., 1981, 64(2): 91-99.

[24]

Ogbuji LU, Mitchell TE, Heuer AH, et al. The β→α Transformation in Polycrystalline SiC: IV, A Comparison of Conventionally Sintered, Hot-Pressed, Reaction-Sintered, and Chemically Vapor-Deposited Samples[J]. J. Am. Ceram. Soc., 1981, 64(2): 100-105.

[25]

Katoh Y, Snead LL, Szlufarska I, et al. Radiation Effects in SiC for Nuclear Structural Applications[J]. Curr. Opin. Solid. ST. M., 2012, 16(3): 143-152.

[26]

Whitmarsh CK, Interrante LV. Synthesis and Structure of a Highly Branched Polycarbosilane Derived from (Chloromethyl) Trichlorosilane[J]. Organometallics, 1991, 10(5): 1 336-1 344.

[27]

Boury B, Corriu RJP, Douglas W E. Poly (Carbosilane) Precursors of Silicon Carbide: The Effect of Cross-linking on Ceramic Residue[J]. Chem. Mater., 1991, 3(3): 487-489.

AI Summary AI Mindmap
PDF

112

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/