Hierarchical Co3O4 microstructures decorated with Ag and Cu oxides: Study of photocatalytic and electrochemical properties

Taotao Yan , Wenjian Wu , Tao Liu , Mingzai Wu , Zhiman Bai , Qingrong Lü , Kerong Zhu

Journal of Wuhan University of Technology Materials Science Edition ›› 2017, Vol. 32 ›› Issue (6) : 1336 -1343.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2017, Vol. 32 ›› Issue (6) : 1336 -1343. DOI: 10.1007/s11595-017-1750-3
Advanced Materials

Hierarchical Co3O4 microstructures decorated with Ag and Cu oxides: Study of photocatalytic and electrochemical properties

Author information +
History +
PDF

Abstract

Three-dimensional hierarchical Co3O4 microstructures decorated with Ag and Cu oxides were prepared via displacement reaction and subsequent annealing treatment. Photocatalytic properties measurements revealed that the photocatalystic activities of CuO/Co3O4 composites (Co3O4 microstructures decorated with CuO) were enhanced while those of Ag2O/Co3O4 composites (Co3O4 microstructures decorated with Ag2O) were reduced, when compared with those of pure hierarchical Co3O4 microstructures toward the degradation of methyl orange. In addition, CuO/Co3O4 composites exhibited an excellent recyclability ability of photodegradation. The electrochemical properties test indicated that both of the composite oxide electrodes exhibited excellent pseudocapacitive performance with relatively high specific capacitance and good long-term cycling stability. With the increase of the loaded Ag2O and CuO dosages deposited on the Co3O4 microstructures surface, the specific capacitance values of the composites were increased. Ag2O/Co3O4 composite electrodes showed higher specific capacitance values and better cycling stability than CuO/Co3O4 composite ones.

Keywords

composites / chemical synthesis / electrochemical measurements / electrochemical properties

Cite this article

Download citation ▾
Taotao Yan, Wenjian Wu, Tao Liu, Mingzai Wu, Zhiman Bai, Qingrong Lü, Kerong Zhu. Hierarchical Co3O4 microstructures decorated with Ag and Cu oxides: Study of photocatalytic and electrochemical properties. Journal of Wuhan University of Technology Materials Science Edition, 2017, 32(6): 1336-1343 DOI:10.1007/s11595-017-1750-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Dai GP, Liu SQ, Liang Y, et al. Synthesis and Enhanced Photoelectrocatalytic Activity of P-n Junction Co3O4/TiO2 Nanotube Arrays[J]. Appl. Surf. Sci., 2013, 264: 157-161.

[2]

Zhao XB, Pang ZW, Wu MZ, et al. Magnetic Field-assisted Synthesis of Wire-like Co3O4 Nanostructures: Electrochemical and Photocatalytic Studies[J]. Mater. Res. Bull., 2013, 48: 92-95.

[3]

Li H, Fei GT, Fang M, et al. Synthesis of Urchin-like Co3O4 Hierarchical Micro/Nanostructures and Their Photocatalytic Activity[J]. Appl. Surf. Sci., 2011, 257: 6 527-6 530.

[4]

Jia WZ, Guo M, Zheng Z, et al. Electrocatalytic Oxidation and Reduction of H2O2 on Vertically Aligned Co3O4 Nanowalls Electrode: Toward H2O2 Detection[J]. Electroanal. Chem., 2009, 625: 27-32.

[5]

Zhang F, Yuan CZ, Lu XJ, et al. Facile Growth of Mesoporous Co3O4 Nanowire Arrays on Ni Foam for High Performance Electrochemical Capacitors[J]. J. Power Sources, 2012, 203: 250-256.

[6]

Ahn HJ, Seong TY. Effect of Pt Nanostructures on the Electrochemical Properties of Co3O4 Electrodes for Micro-electrochemical Capacitors[J]. J. Alloys Comp., 2009, 478: 8-11.

[7]

Yao XY, Xin X, Zhang YM, et al. Co3O4 Nanowires as High Capacity Anode Materials for Lithium Ion Batteries[J]. J. Alloys Comp., 2012, 521: 95-100.

[8]

Zheng J, Liu J, Lv DP, et al. A Facile Synthesis of Flower-like Co3O4 Porous Spheres for the Lithium-ion Battery Electrode[J]. J. Solid State Chem., 2010, 183: 600-605.

[9]

Wang X, Sumboja A, Khoo E, et al. Cryogel Synthesis of Hierarchical Interconnected Macro-/Mesoporous Co3O4 with Superb Electrochemical Energy Storage[J]. J. Phys. Chem. C, 2012, 116: 4 930-4 935.

[10]

Zhang YG, Chen YC, Wang T, et al. Synthesis and Magnetic Properties of Nanoporous Co3O4 Nanoflowers[J]. Micropo. Mesopor. Mat., 2008, 114: 257-261.

[11]

Deng MJ, Huang FL, Sun IW, et al. An Entirely Electrochemical Preparation of A Nano-structured Cobalt Oxide Electrode with Superior Redox Activity[J]. Nanotechnology, 2009, 20: 175 602-175 606.

[12]

Sun HY, Ahmad M, Zhu J, et al. Morphology-controlled Synthesis of Co3O4 Porous Nanostructures for the Application as Lithium-ion Battery Electrode[J]. Electrochim. Acta, 2013, 89: 199-205.

[13]

Yan QY, Li XY, Zhao QD, et al. Shape-controlled Fabrication of the Porous Co3O4 Nanoflower Clusters for Efficient Catalytic Oxidation of Gaseous Toluene[J]. J. Hazard. Mater., 2012, 209–210: 385-391.

[14]

Pan L, Xu M, Zhang ZD, et al. Synthesis and Electrocatalytic Properties of Co3O4 Nanocrystallites with Various Morphologies[J]. J. Clust. Sci., 2010, 21: 655-667.

[15]

Chen YC, Hu L, Wang M, et al. Self-assembled Co3O4 Porous Nanostructures and Their Photocatalytic Activity[J]. Colloids and Surfaces A: Physicochem. Eng. Aspects, 2009, 336: 64-68.

[16]

Wang L, Liu XH, Wang X, et al. Preparation and Electrochemical Properties of Mesoporous Co3O4 Crater-like Microspheres as Supercapacitor Electrode Materials[J]. Curr. Appl. Phys., 2010, 10: 1 422-1 426.

[17]

Liao MX, Liu YF, Hu ZH, et al. Novel Morphologic Co3O4 of Flower-like Hierarchical Microspheres as Electrode Material for Electrochemical Capacitors[J]. J. Alloys Comp., 2013, 562: 106-110.

[18]

Pan L, Zhang ZD. Preparation, Electrocatalytic and Photocatalytic Performances of Nanoscaled CuO/Co3O4 Composite Oxides[J]. J. Mater. Sci.: Mater. Electron, 2010, 21: 1 262-1 269.

[19]

Yamada Y, Yano K, Xu Q, et al. Cu/Co3O4 Nanoparticles as Catalysts for Hydrogen Evolution from Ammonia Borane by Hydrolysis[J]. J. Phys. Chem. C, 2010, 114: 16 456-16 462.

[20]

Pan L, Tang J, Wang FW. Synthesis and Electrocatalytic Performance for P-nitrophenol Reduction of Rod-like Co3O4 and Ag/Co3O4 Composites[J]. Mater. Res. Bull., 2013, 48: 2 648-2 653.

[21]

Hoflund GB, Li ZH. Surface Characterization Study of a Pd/Co3O4 Methane Oxidation Catalyst[J]. Appl. Surf. Sci., 2006, 253: 2 830-2 834.

[22]

Zhang HN, Chen YJ, Wang WW, et al. Hierarchical Mo-decorated Co3O4 Nanowire Arrays on Ni Foam Substrates for Advanced Electrochemical Capacitors[J]. J. Mater. Chem. A, 2013, 1: 8 593-8 600.

[23]

Kohtani S, Yoshida K, Maekawa T, et al. Loading Effects of Silver Oxides Upon Generation of Reactive Oxygen Species in Semiconductor Photocatalysis[J]. Phys. Chem. Chem. Phys., 2008, 10: 2 986-2 992.

[24]

Zhu L, Wei B, Xu LL, et al. Ag2O-Bi2O3 Composites: Synthesis, Characterization and High Efficient Photocatalytic Activities[J]. CrystEngComm, 2012, 14: 5 705-5 709.

[25]

Sarkar D, Ghosh CK, Mukherjee S, et al. Three Dimensional Ag2O/TiO2 Type-II (p–n) Nanoheterojunctions for Superior Photocatalytic Activity[J]. ACS Appl. Mater. Interfaces, 2013, 5: 331-337.

[26]

Jiang HQ, Endo H, Natori H, et al. Fabrication and Efficient Photocatalytic Degradation of Methylene Blue over CuO/BiVO4 Composite under Visible-light Irradiation[J]. Mater. Res. Bull., 2009, 44: 700-706.

[27]

Shi WW, Chopra NT. Surfactant-free Synthesis of Novel Copper Oxide (CuO) Nanowire–Cobalt Oxide (Co3O4) Nanoparticle Heterostructures and Their Morphological Control[J]. J. Nanopart. Res., 2011, 13: 851-868.

[28]

Wu MZ, Pang ZW, Liu XS, et al. Solvothermal Synthesis and Characterization of Cobalt Microcrystals with Hierarchical Radial Structure[J]. J. Alloys Comp., 2012, 513: 245-250.

[29]

Lee WR, Kim MG, Choi JR, et al. Redox-transmetalation Process as a Generalized Synthetic Strategy for Core-shell Magnetic Nanoparticles[J]. J. Am. Chem. Soc., 2005, 127: 16 090-16 097.

[30]

Qiao R, Zhang XL, Zhu LL, et al. Preparation of Three-dimensional Leaflike Cobalt Microcrystals and Decoration of Their Surface with Silver Nanoparticles[J]. J. Nanopart. Res., 2011, 13: 3 843-3 852.

[31]

Speight JG. Lange’s Handbook of Chemistry, 2004 1.401-1.404.

[32]

Rashed MN, El-Amin AA. Photocatalytic Degradation of Methyl Orange in Aqueous TiO2 Under Different Solar Irradiation Sources[J]. Int. J. Phys. Sci., 2007, 2: 073-081.

[33]

Ren LL, Zeng YP, Jiang DL. Preparation, Characterization and Photocatalytic Activities of Ag-deposited Porous TiO2 Sheets[J]. Catal. Commun., 2009, 10: 645-649.

[34]

Vamathevan V, Amal R, Beydoun D, et al. Photocatalytic Oxidation of Organics in Water using Pure and Silver-modified Titanium Dioxide Particles[J]. J. Photoch. Photobio. A, 2002, 148: 233-245.

[35]

Wang YJ, Wang QS, Zhan XY, et al. Visible Light Driven Type II Heterostructures and Their Enhanced Photocatalysis Properties: A Review[J]. Nanoscale, 2013, 5: 8 326-8 339.

[36]

Gao YY, Chen SL, Cao DX, et al. Electrochemical Capacitance of Co3O4 Nanowire Arrays Supported on Nickel Foam[J]. J. Power Sources, 2010, 195: 1 757-1 760.

[37]

Abd El Rehim SS, Hassan HH, Ibrahim MAM, et al. Electrochemical Behaviour of a Silver Electrode in NaOH Solutions[J]. Monatsh. Chem., 1998, 129: 1 103-1 117.

[38]

Zhang HX, Zhang ML. Synthesis of CuO Nanocrystalline and Their Application as Electrode Materials for Capacitors[J]. Mater. Chem. Phys., 2008, 108: 184-187.

AI Summary AI Mindmap
PDF

188

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/