Synthesis of lithium garnet oxides of the compositions series Li7-xLa3Zr2-xTa xO12

Zhian Wang , Jun Mo , Yuping Wu , Hongqi Ye , Xiongwei Wu

Journal of Wuhan University of Technology Materials Science Edition ›› 2017, Vol. 32 ›› Issue (6) : 1261 -1264.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2017, Vol. 32 ›› Issue (6) : 1261 -1264. DOI: 10.1007/s11595-017-1739-y
Advanced Materials

Synthesis of lithium garnet oxides of the compositions series Li7-xLa3Zr2-xTa xO12

Author information +
History +
PDF

Abstract

In order to obtain a safe, reliable, long-lived battery system without use of flammable, volatile, and relatively unstable organic liquid-based electrolytes, lithium garnet oxides with formulas Li7-xLa3Zr2-xTa xO12 (x=0.2-1) were synthesized by the solid state reaction method. Single cubic phases were observed in the composition x range between 0.2 and 1. The lattice parameters decreased with the addition of Ta due to the smaller ionic radius of Ta5+ compared with that of Zr4+, following the Vegard’s law. The total conductivity of the x = 0.3 composition is 6.03×10-5 S·cm-1 at room temperature with an activation energy of 0.30 eV. These lithium garnet oxides exhibit lithium ionic transport that is relevant to lithium battery application.

Keywords

solid electrolytes / cubic garnet / Ta substitution / ionic conductivity

Cite this article

Download citation ▾
Zhian Wang, Jun Mo, Yuping Wu, Hongqi Ye, Xiongwei Wu. Synthesis of lithium garnet oxides of the compositions series Li7-xLa3Zr2-xTa xO12. Journal of Wuhan University of Technology Materials Science Edition, 2017, 32(6): 1261-1264 DOI:10.1007/s11595-017-1739-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

West AR. Ionic Conductivity of Oxides based on Li4SiO4[J]. Journal of Applied Electrochemistry, 1973, 3(4): 327-335.

[2]

Kvist A, Lundén A. Electrical Conductivity of Solid and Molten Lithium Sulfate[J]. Zeitschrift Fur Naturforschung Teil A, 1965, 20: 235.

[3]

Hong YP. Crystal Structure and Ionic Conductivity of Li14Zn(GeO4)4 and Other New Li+ Superionic Conductors[J]. Materials Research Bulletin, 1978, 13(2): 117-124.

[4]

Aono H, Imanaka N, Adachi G. High Li+ Conducting Ceramics[J]. Accounts of Chemical Research, 1994, 27(9): 265-270.

[5]

Adachi G, Imnaka N, Ano H. Fast Li+ Conducting Ceramic Eletrolytes[J]. Advanced Materials, 1996, 8(2): 127-135.

[6]

Aono H, Sugimoto E, Sadaoka Y, et al. Ionic Conductivity of the Lithium Titanium Phosphate (Li1+XMXTi2−X(PO4)3, M = Al, Sc, Y, and La) Systems[J]. Journal of the Electrochemical Society., 1989, 136(2): 590-591.

[7]

Farrington GC, Dunn BS, Briant JL. Li+ and Divalent Ion Conductivity in Beta and Beta″ Alumina[J]. Solid State Ionics, 1981, 3–4: 405-408.

[8]

Itoh M, Inaguma Y, Jung WH, Chen LQ, et al. High Lithium Ion Conductivity in the Perovskite-type Compounds Ln1/2Li1/2TiO3 (Ln=La, Pr, Nd, Sm)[J]. Solid State Ionics, 1994, 70: 203-207.

[9]

Murugan R, Thangadurai V, Weppner W. Fast Lithium Ion Conduction in Garnet-Type Li7La3Zr2O12[J]. Angewandte Chemie International Edition, 2007, 46: 7 778-7 781.

[10]

Awaka J, Kijima N, Hayakawa H, et al. Synthesis and Structure Analysis of Tetragonal Li7La3Zr2O12 with the Garnet-related Type Structure[J]. Journal of Solid State Chemistry, 2009, 182: 2 046-2 052.

[11]

Li YT, Wang CA, Xie H, et al. High Lithium Ion Conduction in Garnet-type Li6La3ZrTaO12[J]. Electrochemistry Communication, 2011, 13: 1 289-1 292.

[12]

Logéat A, Kohler T, Eisele U, et al. From Order to Disorder: The Structure of Lithium-conducting Garnets Li7−xLa3TaxZr2−xO12 (x=0-2) [J]. Solid State Ionics, 2012, 206: 33-38.

[13]

Mazza D. Remarks on a Ternary Phase in the La2O3-Me2O5-Li2O System (Me=Nb, Ta)[J]. Materials Letters, 1988 205-207.

[14]

Cussen EJ. The Structure of Lithium Garnets: Cation Disorder and Clustering in a New Family of Fast Li+ Conductors[J]. Chemical Communications, 2006 412-413.

[15]

Shannon RD, Prewitt CT. Effective Ionic Radii in Oxides and Fluorides[J]. Acta Crystallographica Section B: Structural Crystallography and Crystal Chemistry, 1969, 25(5): 925-946.

[16]

Shannon RD. Crystal Physics, Diffraction, Theoretical and General Crystallography[J]. Acta Crystallographica, 1976, 32: 751-767.

[17]

Thangadurai V, Huggins RA, Weppner W. Use of Simple ac Technique to Determine the Ionic and Electronic Conductivities in Pure and Fesubstituted SrSnO3 Perovskites[J]. Journal of Power Sources, 2002, 108: 64-69.

[18]

O’Callaghan MP, Andrew SP, Jeremy JT, et al. Switching on Fast Lithium Ion Conductivity in Garnets: The Structure and Transport Properties of Li3+xNd3Te2−xSbxO12[J]. Chemistry of Materials, 2008, 20(6): 2 360-2 369.

AI Summary AI Mindmap
PDF

121

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/