Inter-comparative study of quantitative methods of industrial clinker

Benmohamed Mohamed , Galai Haykel , Alouani Rabah , Bejaoui Marouene , Ben Haj Amara Abdessalem , Ben Rhaim Hafsia

Journal of Wuhan University of Technology Materials Science Edition ›› 2017, Vol. 32 ›› Issue (6) : 1250 -1260.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2017, Vol. 32 ›› Issue (6) : 1250 -1260. DOI: 10.1007/s11595-017-1738-z
Advanced Materials

Inter-comparative study of quantitative methods of industrial clinker

Author information +
History +
PDF

Abstract

Impurities from the raw materials, the grinding and the homogenization of the raw materials, the kiln instability and the complexity of the cooling step, all these factors make it difficult to obtain a perfect evaluation of the mineralogical composition of Portland clinker. We studied the limitations of the most commonly used quantitative methods and recommend some procedures to obtain reliable and reproducible results of quantitative analyses. Different clinker samples (provided by the Bizerte Cement Company (Tunisia)) were subjected to an elemental analysis by X-ray fluorescence and the mineralogical composition was determined by the Bogue calculation and by X-ray powder diffraction combined with the Rietveld method (Different softwares were used: XPert High Score Plus version 2.0 and TOPAS version 4.2). We then compared the results obtained by the Rietveld method and the Bogue calculation to the specific peak areas of each phase. The content of each phase, determined by the Rietveld method, varied proportionally to the change in peak area; a significant difference in these results was found by using the elementary Bogue calculation.

Keywords

portland clinker / bogue calculation / rietveld method / quantitative / mineralogy / specific peaks / different software

Cite this article

Download citation ▾
Benmohamed Mohamed, Galai Haykel, Alouani Rabah, Bejaoui Marouene, Ben Haj Amara Abdessalem, Ben Rhaim Hafsia. Inter-comparative study of quantitative methods of industrial clinker. Journal of Wuhan University of Technology Materials Science Edition, 2017, 32(6): 1250-1260 DOI:10.1007/s11595-017-1738-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bentz DP. A Review of Early-age Properties of Cement-based[J]. Cem. Concr. Res., 2008, 38: 196-204.

[2]

Skibsted J, Hall C. Characterization of Cement Minerals, Cements and Their Reaction Products at the Atomic and Nano Scale[J]. Cem. Concr. Res., 2008, 38: 205-255.

[3]

Taylor HFW. Cement Chemistry, 1997 2 London: Thomas Telford Edition.

[4]

De Noirfontaine M-N, Dunstetter F, Courtial M, et al. Polymorphism of Tricalcium Silicate, the Major Compound of Portland Cement Clinker: 2. Modelling Alite for Rietveld Analysis, an Industrial Challenge[J]. Cem. Concr. Res., 2006, 36: 54-64.

[5]

Horkoss SL, Teif R, Rizk T. Influence of the Clinker SO3 on the Cement Characteristics[J]. Cem. Concr. Res., 2011, 41(8): 913-919.

[6]

Xuerun L, Wenlong X, Wang S, et al. Effect of SO3 and MgO on Portland Cement Clinker: Formation of Clinker Phases and Alite Polymorphism[J]. Cons. and Build Mat., 2014, 58: 182-192.

[7]

Campbell D. Microscopical Examination and Interpretation of Portland Cement and Clinker, 1999 2 Illinois, USA: Portland Cement Association Skokie.

[8]

Masaki K, Maki I. Effect of Prolonged Heating at Elevated Temperatures on the Phase Composition and Textures of Portland Cement Clinker[J]. Cem. Concr. Res., 2002, 32(6): 931-934.

[9]

Ono Y. Ono’s Method: Fundamental Microscopy of Portland Cement Clinker[N]. Chichibu Onoda Cement Corporation, 1995

[10]

Stutzman P, Leigh S. Phase Composition Analysis of the NIST Reference Clinkers by Optical Microscopy and X-ray Powder Diffraction[R]. NIST Technical, 2002

[11]

Bogue RH. Calculation of the Compounds in Portland Cement [N]. Ind. Eng. Chem. Anal. Ed., 1929, 1: 192-197.

[12]

Taylor HFW. Modification of the Bogue Calculation[J]. Adv. Cem. Res., 1989, 2: 73-77.

[13]

Scarlett NVY, Madsen IC, Cranswick LMD, et al. Outcomes of the International Union of Crystallography Commission on Powder Diffraction Round Robin on Quantitative Phase Analysis: Samples 2, 3, 4, Synthetic Bauxite, Natural Granodiorite and Pharmaceuticals[J]. J. Appl. Cryst., 2002, 35: 383-400.

[14]

De la Torre AG, Cabeza A, Calvente A, et al. Full Phase Analysis of Portland Clinker by Penetrating Synchrotron Powder Diffraction[J]. Anal Chem., 2001, 73: 151-156.

[15]

Roode-Gutzmer QI, Ballim Y. Phase Composition and Quantitative X-Ray Powder Diffraction Analysis of Portland Cement and Clinker [N]. Materials Science of Concrete VI, in The American Ceramic Society[J]. J. Skalny (ed)., 2001 1-48.

[16]

Stutzman P. Proceedings of the 52nd Annual Denver X-ray Conference [C]. 2003 Colorado.: Denver.

[17]

Stutzman P. Powder Diffraction Analysis of Hydraulic Cements: ASTM Rietveld Round-robin Results on Precision[J]. Powder Diffr., 2005, 20: 97-100.

[18]

Walenta G, Fullmann T. Advances in Quantitative XRD Analysis for Clinker, Cements, and Cementitious Additions[J]. Powder Diffr., 2004, 19: 40-44.

[19]

Scrivener K L, Fullmann T, Gallucci E, et al. Quantitative Study of Portland Cement Hydration by X-ray Diffraction, Rietveld Analysis and Independent Methods[J]. Cem and Conc Res., 2004, 34: 1 541-1 547.

[20]

Pritula O, Smrcok L, Tobbens DM, et al. X-ray and Neutron Rietveld Quantitative Phase Analysis of Industrial Portland Cement Clinkers[J]. Powder Diffr, 2004 319

[21]

Peterson VK, Ray AS, Hunter BA. A Comparative Study of Rietveld Phase Analysis of Cement Clinker Using Neutron, Laboratory X-ray, and Synchrotron Data[J]. Powder Diffr., 2006, 21: 12-18.

[22]

Neubauer J, Goetz-Neunhoeffer F, Holland U, et al. Proceedings of the 12th International Congress of Cement Chemistry, Montreal, 2007

[23]

Leon-Reina L, De la Torre AG, Porras-Va´zquez JM, et al. Round Robin on Rietveld Quantitative Phase Analysis of Portland Cements[J]. J. of App. Crystallogr., 2009 0 021-8 898.

[24]

Fuellmann T, Witzke T, Van Weeren H, Panalytical BV. The Netherlands, Using XRD to cut CO2[R]. 2013 48

[25]

Snellings R, Bazzoni A, Scrivener K. The Existence of Amorphous Phase in Portland Cements: Physical Factors Affecting Rietveld Quantitative Phase Analysis[J]. Cem and Concr Res., 2014, 59: 139-146.

[26]

Rietveld HM. A Profile Refinement Method for Nuclear and Magnetic Structures[J]. J Appl Crystallogr., 1969, 2: 65-71.

[27]

Stutzman P, Leigh S. Phase Analysis of Hydraulic Cements by X-ray Powder Diffraction: Precision, Bias, and Qualification[J]. J. ASTM Int., 2007, 4: 1-11.

[28]

De la Torre AG, Aranda MAG. Accuracy in Rietveld Quantitative Phase Analysis of Portland Cements[J]. J. Appl. Cryst., 2003, 36: 1 169-1 176.

[29]

De la Torre AG, Lopez-Olmo M G, Alvarez-Rua C, et al. Structure and Microstructure of Gypsum and Its Relevance to Rietveld Quantitative Phase Analyses[J]. Powder Diffr., 2004, 19: 240-246.

[30]

Dunstetter F, De Noirfontaine MN, Courtial M. Polymorphism of Tricalcium Silicate, the Major Compound of Portland Cement Clinker 1//Structural Data: Review and Unified Analysis[J]. Cem. Concr. Res., 2006, 36: 39-53.

[31]

De la Torre AG, Bruque S, Campo J, et al. The Superstructure of C3S from Synchrotron and Neutron Powder Diffraction and Its Role in Quantitative Phase Analysis[J]. Cem. Concr. Res., 2002, 32: 1 347-1 356.

[32]

De la Torre AG, De Vera RN, Cuberos AJM, et al. Crystal Structure of Low Magnesium-content Alite: Application to Rietveld Quantitative Phase Analysis[J]. Cem. Concr. Res., 2008, 38: 1 261-1 269.

[33]

Courtial M, De Noirfontaine M-N, Dunstetter F, et al. Polymorphism of Tricalcium Silicate in Portland Cement: a Fast Visual Identification of Structure and Superstructure[J]. Powder Diffr., 2003, 18: 7-15.

[34]

Dreizler I, Knoefel D. Effect of Magnesium Oxide on the Properties of Cement. Zement-Kalk-Gips[N]. Ed. B., 1982, 35(10): 537-550.

[35]

Bish DL, Reynolds RC Jr.. Bish DL, Post JE. Sample Preparation for X-ray Diffraction. Modern Powder Diffraction[J]. Reviews in Mineralogy, 20, Mineralogical Society of America., 1989 73-99.

[36]

Jenkins R, Fawcett TG, Smith DK, et al. JCPDS-international Centre for Diffraction Data Sample Preparation Methods in X-Ray Powder Diffraction[J]. Powder Diffr., 1986, 1: 51-63.

[37]

Le Saoût G, Kocaba V, Scrivener K. Application of the Rietveld Method to the Analysis of Anhydrous Cement[J]. Cem. and Concr. Res., 2011, 41: 133-148.

[38]

Mumme WG, Hill RJ, Bushnell-Wye G, et al. Rietveld Crystal Structure Refinement, Crystal Chemistry and Calculated Powder Diffraction Data for the Polymorphs of Dicalcium Silicate and Related Phases[J]. Neues Jahrb. Mineral. Abh., 1995, 169: 35-68.

[39]

Mondal P, Jeffery JW. The Cristal Structure of Tricalcium Aluminate Ca3Al2O6[J]. Acta Cristallogr., 1975, B31: 689-697.

[40]

Colville AA, Geller S. The Crystal Structure of Brownmillerite, Ca2FeAlO5 [J]. Acta Crystallogr., 1971, B27: 2 311-2 315.

[41]

Colville AA, Geller S. The Crystal Structure of Ca2Fe1.43Al0.57O5 and Ca2Fe1.28Al0.72O5[J]. Acta Crystallogr., 1972, B28: 3 196-3 200.

[42]

Maki I, Chromy S. Microscopic Study on the Polymorphism of Ca3SiO5[J]. Cem. Concr. Res., 1978, 8(4): 407-414.

[43]

Maki I, Kato K. Phase Identification of Alite in Portland Cement Clinker[J]. Cem. Concr. Res., 1982, 12: 93-100.

[44]

Fiquet G, Richet P, Montagnac G. High-temperature Thermal Expansion of Lime, Periclase, Corundum and Spinel[J]. Phys and Chem of Min., 1999, 27: 103-111.

[45]

Sasaki S, Fujino K, Takeuchi Y. X-ray Determination of Electron-Density Distribution in Oxides, MgO, MnO, CoO, and NiO, and Atomic Scattering Factors of Their Constituent Atoms[J]. Proc. Jpn. Acad., 1979, 55: 43-48.

[46]

Cagliotti G, Paoletti A, Ricci FP. Choice of Collimators for a Crystal Spectrometer for Neutron Diffraction[J]. Nucl. Inst., 1958, 3: 223-228.

[47]

Jansen D, Stabler C, Goetz-Neunhoeffer F, et al. Does Ordinary Portland Cement Contain Amorphous Phase? A Quantitative Study Using an External Standard Method[J]. Powder Diffract., 2011, 26: 31-38.

[48]

Madsen IC, Scarlett NVY, Kern A. Description and Survey Ofmethodologies for the Determination of Amorphous Content Via X-ray Powder Diffraction[J]. Z. Kristallogr., 2011, 226: 944-955.

[49]

Finger LW, Cox DE, Jephcoat AP. A Correction for Powder Diffraction Peak Asymmetry Due to Axial Divergence[J]. J. Appl. Crystallogr., 1994, 27: 892-900.

[50]

Cheary RW, Coelho AA. A Fundamental Parameter Approach of X-ray Line Profile Fitting[J]. J. Appl. Crystallogr., 1992, 25: 109-121.

AI Summary AI Mindmap
PDF

115

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/