Effects of functionalized silica nanoparticles on characteristics of nanocomposites PES cation exchange membranes

Mahdi Garmsiri , Hamid Reza Mortaheb , Mahdieh Moghadasi

Journal of Wuhan University of Technology Materials Science Edition ›› 2017, Vol. 32 ›› Issue (6) : 1239 -1249.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2017, Vol. 32 ›› Issue (6) : 1239 -1249. DOI: 10.1007/s11595-017-1737-0
Advanced Materials

Effects of functionalized silica nanoparticles on characteristics of nanocomposites PES cation exchange membranes

Author information +
History +
PDF

Abstract

Nanocomposite cation exchange membranes (CEMs) were prepared by adding various loadings of functionalized silica nanoparticles to the sulfonated polyethersulfone (sPES) polymeric matrix. The silica nanoparticles were functionalized by mercaptopropyl (F 1, IEC=0), propylsulfonic acid (F 2, IEC= 2.71), and sulfonic acid (F 3, IEC=2.84). The properties of prepared membranes were investigated by varying the loadings of functionalized silica nanoparticles. Applying functionalized nanoparticles provides additional ion exchange groups and enhances water contents as well as conductivities and permselectivities of the membranes. The maximum IEC of 1.9 meq.g-1 was obtained for the membrane having 3wt% F 3 nanoparticles and the maximum conductivity of 0.237 S·cm-1 was achieved for the membrane having 2wt% F 3 nanoparticles, which were 19.6% and 64% higher than the corresponding values for sPES membrane, respectively. The excellent properties of the nanocomposite cation-exchange membranes make them appropriate candidates for electrodialysis and desalination processes.

Keywords

functionalized silica / nanocomposite membrane / cationic exchange membrane / polyethersulfone / transport properties

Cite this article

Download citation ▾
Mahdi Garmsiri, Hamid Reza Mortaheb, Mahdieh Moghadasi. Effects of functionalized silica nanoparticles on characteristics of nanocomposites PES cation exchange membranes. Journal of Wuhan University of Technology Materials Science Edition, 2017, 32(6): 1239-1249 DOI:10.1007/s11595-017-1737-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Kariduraganavar MY, Nagarale RK, Kittur AA, et al. Ion-Exchange Membranes: Preparative Methods for Electrodialysis and Fuel Cell Applications[J]. Desalination, 2006, 197: 225-246.

[2]

Xu T. Ion Exchange Membranes: State of Their Development and Perspective[J]. J. Membr. Sci., 2005, 263: 1-29.

[3]

Berezina NP, Kononenko NA, Dyomina OA, et al. Characterization of Ion-Exchange Membrane Materials: Properties vs Structure[J]. Adv. Colloid Interface Sci., 2008, 139: 3-28.

[4]

Preparation and Characterization of Ion-Exchange Membranes, in Membrane Science and Technology, S. Heiner, Editor. 2004, Elsevier.

[5]

Hickner MA, Ghassemi H, Kim YS, et al. Alternative Polymer Systems for Proton Exchange Membranes (PEMs)[J]. Chem. Rev., 2004, 104: 4 587-4 612.

[6]

Kusoglu A, Cho KT, Prato RA, et al. Structural and Transport Properties of Nafion in Hydrobromic-Acid Solutions[J]. Solid State Ionics, 2013, 252: 68-74.

[7]

Teng X, Sun C, Dai J, et al. Solution Casting Nafion/Polytetrafluoroethylene Membrane for Vanadium Redox Flow Battery Application[J]. Electrochim. Acta, 2013, 88: 725-734.

[8]

Ismail AF, Lau WJ. Theoretical Studies on Structural and Electrical Properties of PES/SPEEK Blend Nanofiltration Membrane[J]. AICHE J., 2009, 55: 2 081-2 093.

[9]

Klaysom C, Moon S H, Ladewig BP. Preparation of Porous Ion-Exchange Membranes (IEMs) and Their Characterizations[J]. J. Membr. Sci., 2011, 371: 37-44.

[10]

Sadrzadeh MB, Hattacharjee S. Rational Design of Phase Inversion Membranes by Tailoring Thermodynamics and Kinetics of Casting Solution Using Polymer Additives[J]. J. Membr. Sci., 2013, 441: 31-44.

[11]

Dai H, Guan R, Li C, et al. Development and Characterization of Sulfonated Poly(Ether Sulfone) for Proton Exchange Membrane Materials[J]. Solid State Ionics, 2007, 178: 339-345.

[12]

Guan R, Zou H, Lu D, et al. Polyethersulfone sulfonated by chlorosulfonic acid and its Membrane Characteristics[J]. Eur. Polym. J., 2005, 41: 1 554-1 560.

[13]

Kang M-S, Choi Y-J, Choi I-J, et al. Electrochemical Characterization of Sulfonated Poly(Arylene Ether Sulfone) (S-PES) Cation-Exchange Membranes[J]. J. Membr. Sci., 2003, 216: 39-53.

[14]

Matsumoto K, Nakagawa T, Higashihara T, et al. Sulfonated Poly(Ether Sulfone)s with Binaphthyl Units as Proton Exchange Membranes for Fuel Cell Application[J]. J. Polym. Sci., Part A: Polym. Chem., 2009, 47: 5 827-5 834.

[15]

Aerts P, Greenberg AR, Leysen R, et al. The Influence of Filler Concentration on the Compaction and Filtration Properties of Zirfon®- Composite Ultrafiltration Membranes[J]. Sep. Purif. Technol., 2001, 22–23: 663-669.

[16]

Cao X, Ma J, Shi X, et al. Effect of TiO2 Nanoparticle Size on the Performance of PVDF Membrane[J]. Appl. Surf. Sci., 2006, 253: 2 003-2 010.

[17]

Choi BG, Park H, Park TJ, et al. Solution Chemistry of Self-assembled Graphene Nanohybrids for High-Performance Flexible Biosensors[J]. ACS Nano, 2010, 4: 2 910-2 918.

[18]

Gomes D, Buder I, Nunes SP. Sulfonated Silica-Based Electrolyte Nanocomposite Membranes[J]. J. Polym. Sci., Part B: Polym. Phys., 2006, 44: 2 278-2 298.

[19]

Hasanabadi N, Ghaffarian SR, Hasani-Sadrabadi MM. Magnetic Field Aligned Nanocomposite Proton Exchange Membranes Based on Sulfonated Poly (Ether Sulfone) and Fe2O3 Nanoparticles for Direct Methanol Fuel Cell Application[J]. Int. J. Hydrogen Energy, 2011, 36: 15 323-15 332.

[20]

Hasani-Sadrabadi MM, Dashtimoghadam E, Ghaffarian SR, et al. Novel High-Performance Nanocomposite Proton Exchange Membranes Based on Poly (Ether Sulfone)[J]. Renewable Energy, 2010, 35: 226-231.

[21]

Kickelbick G. Concepts for the Incorporation of Inorganic Building Blocks into Organic Polymers on a Nanoscale[J]. Prog. Polym. Sci., 2003, 28: 83-114.

[22]

Klaysom C, Marschall R, Wang L, et al. Synthesis of Composite Ion-Exchange Membranes and Their Electrochemical Properties for Desalination Applications[J]. J. Mater. Chem., 2010, 20: 4 669-4 674.

[23]

Okada A, Usuki A. The Chemistry of Polymer-Clay Hybrids[J]. Mater. Sci. Eng., C, 1995, 3: 109-115.

[24]

Park KT, Kim SG, Chun JH, et al. Composite Membranes Based on a Sulfonated Poly(Arylene Ether Sulfone) and Proton-Conducting Hybrid Silica Particles for High Temperature Pemfcs[J]. Int. J. Hydrogen Energy, 2011, 36: 10 891-10 900.

[25]

Roelofs KS, Hirth T, Schiestel T. Sulfonated Poly(Ether Ether Ketone)-based Silica Nanocomposite Membranes for Direct Ethanol Fuel Cells [J]. J. Membr. Sci., 2010, 346: 215-226.

[26]

Watanabe M, Uchida H, Emori M. Polymer Electrolyte Membranes Incorporated with Nanometer-Size Particles of Pt and/or Metal-Oxides: Experimental Analysis of the Self-Humidification and Suppression of Gas-Crossover in Fuel Cells[J]. J. Phys. Chem. B, 1998, 102: 3 129-3 137.

[27]

Zarrin H, Higgins D, Jun Y, Chen, et al. Functionalized Graphene Oxide Nanocomposite Membrane for Low Humidity and High Temperature Proton Exchange Membrane Fuel Cells[J]. The Journal of Physical Chemistry C, 2011, 115: 20 774-20 781.

[28]

Zuo X, Yu S, Xu X, et al. Preparation of Organic-Inorganic Hybrid Cation-Exchange Membranes via Blending Method and Their Electrochemical Characterization[J]. J. Membr. Sci., 2009, 328: 23-30.

[29]

Klaysom C, Moon S-H, Ladewig BP, et al. The Effects of Aspect Ratio of Inorganic Fillers on the Structure and Property of Composite Ion-Exchange Membranes[J]. J. Colloid Interface Sci., 2011, 363: 431-439.

[30]

Shahi VK. Highly Charged Proton-Exchange Membrane: Sulfonated Poly(Ether Sulfone)-Silica Polyelectrolyte Composite Membranes for Fuel Cells[J]. Solid State Ionics, 2007, 177: 3 395-3 404.

[31]

Kim H-J, Shul Y-G, Han H. Sulfonic-Functionalized Heteropolyacid- Silica Nanoparticles for High Temperature Operation of a Direct Methanol Fuel Cell[J]. J. Power Sources, 2006, 158: 137-142.

[32]

Krishnan NN, Henkensmeier D, Jang JH, et al. Sulfonated Poly(Ether Sulfone)-based Silica Nanocomposite Membranes for High Temperature Polymer Electrolyte Fuel Cell Applications[J]. Int. J. Hydrogen Energy, 2011, 36: 7 152-7 161.

[33]

Shen Y, Qiu X, Shen J, et al. PVDF-g-PSSA and Al2O3 Composite Proton Exchange Membranes[J]. J. Power Sources, 2006, 161: 54-60.

[34]

Nonjola PT, Mathe MK, Modibedi RM. Chemical Modification of Polysulfone: Composite Anionic Exchange Membrane with TiO2 Nano- Particles[J]. Int. J. Hydrogen Energy, 2013, 38: 5 115-5 121.

[35]

Hosseini SM, Koranian P, Gholami A, et al. Fabrication of Mixed Matrix Heterogeneous Ion Exchange Membrane by Multiwalled Carbon Nanotubes: Electrochemical Characterization and Transport Properties of Mono and Bivalent Cations[J]. Desalination, 2013, 329: 62-67.

[36]

Fiorilli S, Caldarola D, Ma H, et al. Bi-functionalization of Silica Spheres with Sulfonic and Carboxylic Groups via a Co-Condensation Route[J]. J. Sol-Gel Sci. Technol., 2011, 60: 260-265.

[37]

Meeks ND, Rankin S, Bhattacharyya D. Sulfur-Functionalization of Porous Silica Particles and Application to Mercury Vapor Sorption[J]. Ind. Eng. Chem. Res., 2010, 49: 4 687-4 693.

[38]

Zolfigol MA, Khazaei A, Mokhlesi M, et al. Synthesis, Characterization and Catalytic Properties of Monodispersed Nano-Sphere Silica Sulfuric Acid[J]. J. Mol. Catal. A: Chem., 2013, 370: 111-116.

[39]

Dı́az I, Mohino F, Pérez-Pariente J, et al. Synthesis, Characterization and Catalytic Activity of MCM-41-Type Mesoporous Silicas Functionalized with Sulfonic Acid[J]. Appl. Catal., A, 2001, 205: 19-30.

[40]

Yang LM, Wang YJ, Luo GS, et al. Functionalization of SBA-15 Mesoporous Silica with Thiol or Sulfonic Acid Groups Under the Crystallization Conditions[J]. Microporous Mesoporous Mater., 2005, 84: 275-282.

[41]

Soboleva T, Xie Z, Shi Z, et al. Investigation of the Through-Plane Impedance Technique for Evaluation of Anisotropy of Proton Conducting Polymer Membranes[J]. J. Electroanal. Chem., 2008, 622: 145-152.

[42]

Gnusin NP, Berezina NP, Dyomina OA, et al. Physicochemical Principles of Testing Ion-Exchange Membranes[J]. Russ. J. Electrochem., 1996, 32: 154-163.

[43]

Gahlot S, Sharma PP, Gupta H, et al. Preparation of Graphene Oxide Nano-Composite Ion-Exchange Membranes for Desalination Application[J]. RSC Advances, 2014, 4: 24 662-24 670.

[44]

Siddiqi FA, Khan IR, Saksena SK, et al. Studies with Model Membranes[J]. J. Membr. Sci., 1977, 2: 245-261.

[45]

Gnusin NP, Berezina NP, Kononenko NA, et al. Transport Structural Parameters to Characterize Ion Exchange Membranes[J]. J. Membr. Sci., 2004, 243: 301-310.

[46]

Sidorova M, Ermakova L, Kiprianova A, et al. Electrochemical Characteristics and Concentration Polarization of Perfluorinated Cation-Exchange Membranes[J]. Adv. Colloid Interface Sci., 2007, 134–135: 224-235.

[47]

Klaysom C, Moon S-H, Ladewig BP, et al. The Influence of Inorganic Filler Particle Size on Composite Ion-Exchange Membranes for Desalination[J]. J. Phys. Chem. C, 2011, 115: 15 124-15 132.

[48]

Du L, Yan X, He G, et al. SPEEK Proton Exchange Membranes Modified with Silica Sulfuric Acid Nanoparticles[J]. Int. J. Hydrogen Energy, 2012, 37: 11 853-11 861.

AI Summary AI Mindmap
PDF

97

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/