Effects of milling and heat treatment on the synthesis of NiTi powders

A. R. Sadeghi , H. Mostajabodaveh , A. Babakhani , M. S. Abravi , A. Salehi

Journal of Wuhan University of Technology Materials Science Edition ›› 2017, Vol. 32 ›› Issue (5) : 1156 -1162.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2017, Vol. 32 ›› Issue (5) : 1156 -1162. DOI: 10.1007/s11595-017-1725-4
Metallic Materials

Effects of milling and heat treatment on the synthesis of NiTi powders

Author information +
History +
PDF

Abstract

This work reports on the production of Ni-50 at% Ti powders by a planetary ball mill in various times (0.5, 1, 2, 6, 20, 36, 54 and 120 h) and subsequent heat treatment in Ar atmosphere at 820 °C. Study of powders structure after milling and heat treatment was carried out by scanning electron microscopy and X-ray diffractometry. According to the results, after milling for 6 hours NiTi phase formed, and by the milling evolution up to 54 h, it became the dominant phase. It was found that by the milling development, a layer structure in powder particles was formed, also by increasing the milling time a more homogeneous structure was obtained. Amorphous NiTi transformed into ordered NiTi, Ni3Ti, NiTi2 and minor TiO2 and TiO after heat treatment at 820 °C for 1 h.

Keywords

NiTi / milling / amorphous / heat treatment

Cite this article

Download citation ▾
A. R. Sadeghi, H. Mostajabodaveh, A. Babakhani, M. S. Abravi, A. Salehi. Effects of milling and heat treatment on the synthesis of NiTi powders. Journal of Wuhan University of Technology Materials Science Edition, 2017, 32(5): 1156-1162 DOI:10.1007/s11595-017-1725-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Petrini L, Migliavacca F. Biomedical Applications of Shape Memory Alloys[J]. J. Metall, 2011, 2011: 1-15.

[2]

Seyyed Aghamiri SM, Ahmadabadi MN, Raygan S. Combined Effects of Different Heat Treatments and Cu Element on Transformation Behavior of NiTi Orthodontic Wires[J]. J. Mech. Behav. Biomed. Mater., 2011, 4(3): 298-302.

[3]

Piquard R, D’Acunto A, Laheurte P, et al. Micro-end Milling of NiTi Biomedical Alloys, Burr Formation and Phase Transformation[J]. Precis Eng., 2014, 38(2): 356-364.

[4]

Yanqiu Z, Shuyong J, Yanan Z, et al. Microstructural Evolution of Plastic Deformation of NiTi Shape Memory Alloy at Low Temperature [J]. J. Wuhan. Univ. Technol., 2012, 28: 1034-1037.

[5]

Sadrnezhaad SK, Selahi AR. Effect of Mechanical Alloying and Sintering on Ni–Ti Powders[J]. Mater. Manuf. Processes, 2004, 19(3): 475-486.

[6]

Mehrabi K, Bahmanpour H, Shokuhfar A, et al. Influence of Chemical Composition and Manufacturing Conditions on Properties of NiTi Shape Memory Alloys[J]. Mater. Sci. Eng. A, 2008, 481–482: 693-696.

[7]

Prokoshkin SD, Khmelevskaya IY, Dobatkin SV, et al. Alloy Composition, Deformation Temperature, Pressure and Postdeformation Annealing Effects in Severely Deformed Ti-Ni Based Shape Memory Alloys[J]. Acta Mater., 2005, 53(9): 2703-2714.

[8]

Elahinia MH, Hashemi M, Tabesh M, et al. Manufacturing and Processing of NiTi Implants: A Review[J]. Prog. Mater. Sci., 2012, 57(5): 911-946.

[9]

Sadeghi A, Babakhani A, Zebarjad SM, et al. Use of Grey Relational Analysis for Multi-objective Optimisation of NiTiCu Shape Memory Alloy Produced by Powder Metallurgy Process[J]. J. Intell. Mater. Syst. Struct., 2014, 25(16): 2093-2098.

[10]

Amini Mashhadi H, Bataev I, Mohammad Sadeghi B, et al. Mechanochemical Synthesis and Shock Wave Consolidation of TiN(Al) Nanostructure Solid Solution[J]. Mater. Chem. Phys., 2014, 145(3): 366-375.

[11]

Bram M, Ahmad-Khanlou A, Heckmann A, et al. Powder Metallurgical Fabrication Processes for NiTi Shape Memory Alloy Parts[J]. Mater. Sci. Eng., A, 2002, 337(1-2): 254-263.

[12]

Bozorg SFK, Rabiezadeh A. Powder Based on Nano-crystalline NiTi Produced Using High Energy Ball Milling and Subsequent Heat Treatment[J]. AIP Conf. Proc., 2010, 1217(1): 452-456.

[13]

Mousavi T, Karimzadeh F, Abbasi MH. Synthesis and Characterization of Nanocrystalline NiTi Intermetallic by Mechanical Alloying[J]. Mater. Sci. Eng. A, 2008, 487(1-2): 46-51.

[14]

Amini R, Alijani F, Ghaffari M, et al. Formation of B19′, B2, and Amorphous Phases during Mechano-synthesis of Nanocrystalline NiTi Intermetallics[J]. Powder Technol., 2014, 253: 797-802.

[15]

Ghadimi M, Shokuhfar A, Rostami HR, et al. Effects of Milling and Annealing on Formation and Structural Characterization of Nanocrystalline Intermetallic Compounds from Ni-Ti Elemental Powders[J]. Mater. Lett., 2012, 80: 181-183.

[16]

Pilarczyk W, Nowosielski R, Pilarczyk A, et al. A Production Attempt of Ni50Ti50 and Ni52Ti41Nb7 Alloys by Mechanical Alloying Method[J]. AMSE, 2011, 47(1): 19-26.

[17]

Amini Mashhadi H, Bataev I, Tanaka S, et al. On the Mechanochemical Activated Synthesis of Nanocrystalline In-situ Ti(Al)N[J]. Int. J. Refract. Met. Hard Mater., 2012, 30(1): 25-32.

[18]

Farabi Khaneghahi S, Sharafi S. Magnetic and Structural Properties of Nanostructured (Fe65Co35)100-xCrx (x=0, 10) Powders Prepared by Mechanical Alloying Process[J]. Adv. Powder Technol., 2014, 25(1): 211-218.

[19]

Abdala J, Fernandes BB, dos Santos DR, et al. Preparation of 50Ni–45Ti–5Zr Powders by High-energy Ball Milling and Hot Pressing[J]. Alloys Compd., 2010, 495(2): 423-427.

[20]

Suryanarayana C, Klassen T, Ivanov E. Synthesis of Nanocomposites and Amorphous Alloys by Mechanical Alloying[J]. J. Mater. Sci., 2011, 46(19): 6301-6315.

[21]

Amini R, Shokrollahi H, Salahinejad E, et al. Microstructural, Thermal and Magnetic Properties of amorphous/Nanocrystalline FeCrMnN Alloys Prepared by Mechanical Alloying and Subsequent Heat Treatment[J]. J. Am. Ceram. Soc., 2009, 480(2): 617-624.

[22]

Alijani F, Amini R, Ghaffari M, et al. Effect of Milling Time on the Structure, Micro-hardness, and Thermal Behavior of Amorphous/Nanocrystalline TiNiCu Shape Memory Alloys Developed by Mechanical Alloying[J]. Mater. Des., 2014, 55: 373-380.

[23]

Tria S, Elkedim O, Li WY, et al. Ball Milled Ni-Ti Powder Deposited by Cold Spraying[J]. Alloys Compd., 2009, 483(1-2): 334-336.

[24]

Shi J, Wei MZ, Ma YJ, et al. Length Scale Dependent Alloying and Strain-rate Sensitivity of Ti/Ni Multilayers[J]. Mater. Sci. Eng., A, 2015, 648: 31-36.

[25]

Liu KT, Duh JG. Kinetics of the Crystallization in Amorphous NiTi Thin Films[J]. Non-Cryst. Solids, 2007, 353(11-12): 1060-1064.

[26]

Jamaluddin L, Zhimeng X, Xiaoxue X, et al. Phase Formation of Ni-Ti Via Solid State Reaction[J]. Phys. Scr., 2007, 2007(T129): 250-254.

[27]

ASM International. Handbook A: Volume 3: Alloy Phase Diagrams (Asm Handbook)[M]. 1992 OH: ASM International.

[28]

Liu J-F, Li X-L, Li Y-D. Synthesis and Characterization of Nanocrystalline Niobates[J]. Cryst. Growth, 2003, 247(3-4): 419-424.

[29]

Locci AM, Orrù R, Cao G, et al. Field-activated Pressure-assisted Synthesis of NiTi[J]. Intermetallics, 2003, 11(6): 555-571.

AI Summary AI Mindmap
PDF

131

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/