Synthesis of zinc oxide nanoparticles with good photocatalytic activities under stabilization of bovine serum albumin

Zhi Chen , Li Shuai , Bodan Zheng , Dudu Wu

Journal of Wuhan University of Technology Materials Science Edition ›› 2017, Vol. 32 ›› Issue (5) : 1061 -1066.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2017, Vol. 32 ›› Issue (5) : 1061 -1066. DOI: 10.1007/s11595-017-1711-x
Advanced Materials

Synthesis of zinc oxide nanoparticles with good photocatalytic activities under stabilization of bovine serum albumin

Author information +
History +
PDF

Abstract

Zinc oxide nanoparticles were synthesized using bovine serum albumin as stabilizers through a facile one-pot strategy in aqueous media. The morphology and crystal phase of the zinc oxide nanoparticles were determined by transmission electron microscopy, X-ray diffractograms, and Fourier transform infrared spectroscopy. The synthesized ZnO nanoparticles exhibited strong absorption and photoluminescence properties in the visible wavelength region based on the fluorescence and UV-visible spectroscopy. Based on the results, the zinc oxide nanoparticles could effectively degrade the organic dyes through the mediation of the hydroxyl radical under visible light irradiation. Furthermore, the zinc oxide nanoparticles show good recycling stability during the photocatalytic experiments. These results suggested that the as-prepared zinc oxide nanoparticles might be used as a potential photocatalyst to efficiently treat the organic pollutants.

Keywords

zinc oxide / bovine serum albumin / nanoparticles / photocatalysis / rhodamine B

Cite this article

Download citation ▾
Zhi Chen, Li Shuai, Bodan Zheng, Dudu Wu. Synthesis of zinc oxide nanoparticles with good photocatalytic activities under stabilization of bovine serum albumin. Journal of Wuhan University of Technology Materials Science Edition, 2017, 32(5): 1061-1066 DOI:10.1007/s11595-017-1711-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Karunakaran C, Dhanalakshmi R. Phenol Degradation on Pr6O11 Surface under UV-A Light. Synergistic Photocatalysis by Semiconductors[J]. Radiat. Phys. Chem., 2009, 78(1): 8-12.

[2]

He J X, Hua J L, Hu G X, et al. Organic Dyes Incorporating a Thiophene or Furan Moiety for Efficient Dye-Sensitized Solar Cells[J]. Dyes and Pigments, 2014, 104(104): 75-82.

[3]

Mahmood M A, Baruah S, Anal A K, et al. Heterogeneous Photocatalysis for Removal of Microbes from Water[J]. Environ. Chem. Lett., 2012, 10(2): 145-151.

[4]

Fujishima A, Honda K. Electrochemical Photolysis of Water at a Semiconductor Electrod [J]. Nature, 1972, 238(5358): 37-38.

[5]

Wu S Z, Li N, Zhang W D. Attachment of ZnO Nanoparticles onto Layered Double Hydroxides Microspheres for High Performance Photocatalysis[J]. J. Porous. Mater., 2014, 21(2): 157-164.

[6]

Kanakaraju D, Glass B D, Oelgemöller M. Titanium Dioxide Photocatalysis for Pharmaceutical Wastewater Treatment[J]. Environ. Chem. Lett., 2014, 12(1): 27-47.

[7]

Di Paolao A, Addamo M, Palmisano L. Mixed Oxide/Sulfide Systems for Photocatalysis[J]. Res. Chem. Intermed., 2003, 29(5): 467-475.

[8]

Wang G, Ma X C, Huang B B, et al. Controlled Synthesis of Ag2O Microcrystals with Facet-Dependent Photocatalytic Activities [J]. J. Mater. Chem., 2012, 22(39): 21189-21194.

[9]

Hu J S, Ren L L, Guo Y G, et al. Mass Production and High Photocatalytic Activity of ZnS Nanoporous Nanoparticles [J]. Angew. Chem., 2005, 44(8): 1269-1273.

[10]

Zhu Z M, Chen T L, Gu Y, et al. Zinc Oxide Nanowires Grown by Vapor-Phase Transport Using Selected Metal Catalysts: a Comparative Study [J]. Chem. Mater., 2005, 17(16): 4227-4234.

[11]

Look D C. Recent Advances in ZnO Materials and Devices[J]. Materials Science and Engineering: B, 2001, 80(1-3): 383-387.

[12]

Zhang L L, Jiang Y H, Ding Y L, et al. Mechanistic Investigation into Antibacterial of Suspensions of ZnO Nanoparticles Against E.coli [J]. J. Nanopart. Res., 2010, 12(5): 1625-1636.

[13]

Xiang D, Qu F Y, Chen X, et al. Synthesis of Porous ZnO Nanospheres for Gas Sensor and Photocatalysis[J]. J. Sol-Gel. Sci. Technol., 2014, 69(2): 370-377.

[14]

Elmolla E S, Chaudhuri M. Degradation of Amoxicillin, Ampicillin and Cloxacillin Antibiotics in Aqueous Solution by the UV/ZnO Photocatalytic Process[J]. J. Hazard. Mater., 2010, 173(1-3): 445-449.

[15]

Pal B, Sharon M. Enhanced Photocatalytic Activity of Highly Porous ZnO Thin Films Prepared by Sol-Gel Process[J]. Mater. Chem. Phys., 2002, 76(1): 82-87.

[16]

Song L X, Jiang Q X, Du P F, et al. A Facile Synthesis of Novel ZnO Structures and Their Applications in Photocatalysis[J]. Mater. Lett., 2014, 123(9): 214-216.

[17]

Xie J, Wang H, Duan M, et al. Synthesis and Photocatalysis Properties of ZnO Structures with Different Morphologies via Hydrothermal Method [J]. Appl. Surf. Sci., 2011, 257(15): 6358-6363.

[18]

Cao Y, Wang H J, Cao C, et al. Synthesis and Anti-ultraviolet Properties of Monodisperse BSA-Conjugated Zinc Oxide Nanoparticles [J]. Mater. Lett., 2011, 65(2): 340-342.

[19]

An X L, Li Q Z, Liu H P, et al. FT-IR Study of the Interaction Between Bovine Serum Albumins and Cetyltrimethyl Ammonium Bromide[J]. Journal of Southwest China Normal University (Natural Science), 2005, 30(4): 699-702.

[20]

Ye Q, Hu R, Lin Z Y, et al. In Situ ATR-FTIR Study on the Interaction of HA with Bovine Serum Albumin[J]. Chemical Research in Chinese Universities, 2006, 27(8): 1552-1554.

[21]

Zhuang J, Chi Y H, Liu M. Preparation and Optic Properties of Water-Soluble ZnO Quantum Dots[J]. Chemical Research in Chinese Universities, 2007, 28(12): 2246-2251.

[22]

Zhuang J, Chi Y H, Liu M. Preparation and Luminescence Properties of ZnO Quantum-Dots Capped with SiO2 in Dilute Water-Free Solution[J]. Chinese Journal of Inorganic Chemistry, 2006, 22(4): 651-655.

[23]

Rosenthal S J. Bar-Coding Biomolecules with Fluorescent Nanocrystals[J]. Nat. Biotechnol., 2001, 19(7): 621-622.

[24]

Guo Y M, Jiang L L, Wang L L, et al. Facile Synthesis of Stable Cadmium Sulfide Quantum Dots with Good Photocatalytic Activities under Stabilization of Hydrophobic Amino Acids[J]. Mater. Lett., 2012, 74(5): 26-29.

[25]

Sun J H, Yang H, Xian T, et al. Polyacrylamide Gel Preparation, Photocatalytic Properties and Mechanism of BiVO4 Particles[J]. Chinese Journal of Catalysis, 2012, 33(12): 1982-1987.

[26]

Dong C, Wei Y X, Wei Y L. Study on the Interaction Between Methylene Violet and Calf Thymus DNA by Molecular Spectroscopy [J]. Journal of Photochemistry and Photobiology A: Chemistry, 2005, 174(1): 15-22.

AI Summary AI Mindmap
PDF

130

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/