Crystallization and luminescence properties of Sm3+-doped SrO-Al2O3-SiO2 glass-ceramics

Hong Li , Liwang Liu , Xiaozhe Tang , Qian Wang , Paul W. Wang , Wei Wang

Journal of Wuhan University of Technology Materials Science Edition ›› 2017, Vol. 32 ›› Issue (5) : 1025 -1031.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2017, Vol. 32 ›› Issue (5) : 1025 -1031. DOI: 10.1007/s11595-017-1706-7
Advanced Materials

Crystallization and luminescence properties of Sm3+-doped SrO-Al2O3-SiO2 glass-ceramics

Author information +
History +
PDF

Abstract

The Sm3+-doped SrO-Al2O3-SiO2 (SAS) glass-ceramics with excellent luminescence properties were prepared by batch melting and heat treatment. The crystallization behavior and luminescent properties of the glass-ceramics were investigated by DTA, XRD, SEM and luminescence spectroscopy. The results indicate that the crystal phase precipitated in this system is monocelsian (SrAl2Si2O8) and with the increase of nucleation/crystallization temperature, the crystallite increases from 66 % to 79 %. The Sm3+-doped SAS glass-ceramics emit green, orange and red lights centered at 565, 605, 650 and 715 nm under the excitation of 475 nm blue light which can be assigned to the 4G5/26 H j/2 (j=5, 7, 9, 11) transitions of Sm3+, respectively. Besides, by increasing the crystallization temperature or the concentration of Sm3+, the emission lights of the samples located at 565, 605 and 650 nm are intensified significantly. The present results demonstrate that the Sm3+-doped SAS glass-ceramics are promising luminescence materials for white LED devices by fine controlling and combining of these three green, orange and red lights in appropriate proportion.

Keywords

Sm3+-doped / SrO-Al2O3-SiO2 / glass-ceramic / crystallization / luminescence properties

Cite this article

Download citation ▾
Hong Li, Liwang Liu, Xiaozhe Tang, Qian Wang, Paul W. Wang, Wei Wang. Crystallization and luminescence properties of Sm3+-doped SrO-Al2O3-SiO2 glass-ceramics. Journal of Wuhan University of Technology Materials Science Edition, 2017, 32(5): 1025-1031 DOI:10.1007/s11595-017-1706-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ju G, Hu Y, Chen L, et al. A Reddish Orange-Emitting Stoichiometric Phosphor K3Eu(PO4)2 for White Light-Emitting Diodes[J]. Opt. Laser Technol., 2012, 44(1): 39-42.

[2]

Korthout K, Smet P F, Poelman D. Rare Earth Doped Core-Shell Particles as Phosphor for Warm-White Light-Emitting Diodes[J]. Appl. Phys. Lett., 2011, 98(26): 261919

[3]

Narukawa Y. White-Light LEDs[J]. Opt. Photonics News, 2004, 15(4): 24-29.

[4]

Park W, Song Y, Moon J, et al. Synthesis and Luminescent Properties of Eu2+ Doped Nitrogen-Rich Ca-α-SiAlON Phosphor for White Light-Emitting Diodes[J]. Solid State Sci., 2010, 12(11): 1853-1856.

[5]

El-Ghoroury H S, Yeh M, Chen J, et al. Growth of Monolithic Full-Color Gan-Based LED with Intermediate Carrier Blocking Layers[J]. AIP Adv., 2016, 6(7): 075316

[6]

Iida D, Lu S, Hirahara S, et al. Enhanced Light Output Power of Ingan-Based Amber LEDs by Strain-Compensating AlN/AlGaN Barriers[J]. J. Cryst. Growth, 2016 448105-448108.

[7]

Chen D, Xiang W, Liang X, et al. Advances in Transparent Glass–Ceramic Phosphors for White Light-Emitting Diodes-a Review[J]. J. Eur. Ceram. Soc., 2015, 35(3): 859-869.

[8]

Kido J, Kimura M, Nagai K. Multilayer White Light-Emitting Organic Electroluminescent Device[J]. Science, 1995, 267(5202): 1332

[9]

Gong M, Liang X, Wang Y, et al. Novel Synthesis and Optical Characterization of Phosphor-Converted WLED Employing Ce: YAGDoped Glass[J]. J. Alloys Compd., 2016 664125-664132.

[10]

Fan J, Qian C, Zhang M, et al. Thermal, Optical and Electrical Analysis on Phosphor-Converted White LED Chip Scale Packages with Both Experiment and Simulation[C]. 2016 17th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE), 2016

[11]

Zhao Y, Xu H, Zhang X, et al. Facile Synthesis of YAG: Ce3+ Thick Films for Phosphor Converted White Light Emitting Diodes[J]. J. Eur. Ceram. Soc., 2015, 35(13): 3761-3764.

[12]

Chen Z, Zhang J, Chen S, et al. Preparation and Luminescence Property of Eu2+, Mn2+ Co-Doped Silicates Phosphors for White LED[J]. J. Alloys Compd., 2015 632756-632759.

[13]

Zhang Y, Feng J, Sai Q, et al. Sol-Gel Synthesis and Photoluminescence Characterization of Ba2SiO4: Eu2+ Green Phosphors for White-LED Application[J]. Integr. Ferroeletrics, 2014, 154(1): 128-134.

[14]

Bobkova N, Trusova E. Glass-Ceramic Light-Converting Composites for Lighting Sources of a Remote Type Based on Light-Emitting Diodes[J]. Glass Phys. Chem., 2015, 41(3): 296-301.

[15]

Shur M S, Zukauskas R. Solid-State Lighting: Toward Superior Illumination[J]. Proceedings of the IEEE, 2005, 93(10): 1691-1703.

[16]

Yanagisawa T, Kojima T. Long-Term Accelerated Current Operation of White Light-Emitting Diodes[J]. J. Lumin., 2005, 114(1): 39-42.

[17]

Chen L, Chen X, Liu F, et al. Charge Deformation and Orbital Hybridization: Intrinsic Mechanisms on Tunable Chromaticity of Y3Al5O12: Ce3+ Luminescence by Doping Gd3+ for Warm White LEDs [J]. Scientific Reports, 2015, 5: 11514-11530.

[18]

Sun J, Cui D. Synthesis, Structure, and Thermally Stable Luminescence of Dy3+-Doped Na3YSi2O7 Host Compound[J]. J. Am. Chem. Soc., 2014, 97(3): 843-847.

[19]

Hench L, Kokubo T. Properties of Bioactive Glasses and Glass-Ceramics, Handbook of Biomaterial Properties[M]. 2016 Berlin: Springer.

[20]

Huang S, Gu M. Enhanced Luminescent Properties of Tb3+ Ions in Transparent Glass Ceramics Containing BaGdF5 Nanocrystals[J]. J. Non-Cryst. Solids, 2012, 358(1): 77-80.

[21]

Li C, Su Q. A New Blue Phosphorescent Glass-Ceramic: Rare-Earth-Doped Calcium Aluminoborate[J]. J. Alloys Compd., 2006 408875-408878.

[22]

Liu G, Zhou Z, Shi Y, et al. Ce: YAG Transparent Ceramics for Applications of High Power LEDs: Thickness Effects and High Temperature Performance[J]. Mater. Lett., 2015 139480-139482.

[23]

Chen D, Chen Y. Transparent Ce3+: Y3Al5O12 Glass Ceramic for Organic-Resin-Free White-Light-Emitting Diodes[J]. Ceram. Int., 2014, 40(9): 15325-15329.

[24]

Chen L-Y, Cheng W-C, Tsai C-C, et al. High-Performance Glass Phosphor for White-Light-Emitting Diodes Via Reduction of Si-Ce3+: YAG Inter-Diffusion[J]. Opt. Mater. Express, 2014, 4(1): 121-128.

[25]

Lee J S, Arunkumar P, Kim S, et al. Smart Design to Resolve Spectral Overlapping of Phosphor-in-Glass for High-Powered Remote-Type White Light-Emitting Devices[J]. Optics Letters, 2014, 39(4): 762-765.

[26]

Zhang R, Lin H, Yu Y, et al. A New-Generation Color Converter for High-Power White LED: Transparent Ce3+: YAG Phosphor-in-Glass[J]. Laser & Photonics Reviews, 2014, 8(1): 158-164.

[27]

Su Y, Liu M, Han D, et al. Ce3+ and Ln3+ (Ln= Dy, Eu, Sm, Tb) Codoped SrF2 Nanoparticles: Synthesis and Multicolor Light Emission[J]. J. Nanosci. Nanotechnol., 2016, 16(4): 3956-3960.

[28]

Okada G, Ueda J, Tanabe S, et al. Samarium-Doped Oxyfluoride Glass-Ceramic as a New Fast Erasable Dosimetric Detector Material for Microbeam Radiation Cancer Therapy Applications at the Canadian Synchrotron[J]. J. Am. Chem. Soc., 2014, 97(7): 2147-2153.

[29]

Fang J, You H, Chen J, et al. Memory Devices Based on Lanthanide (Sm3+, Eu3+, Gd3+) Complexes[J]. Inorg. Chem., 2006, 45(9): 3701-3704.

[30]

Lakshminarayana G, Yang R, Qiu J, et al. White Light Emission from Sm3+/Tb3+ Codoped Oxyfluoride Aluminosilicate Glasses under Uv Light Excitation[J]. J. Phys. D: Appl. Phys., 2008, 42(1): 015414

[31]

Li H, Wang Q, Zhang Z, et al. Influence of SrO to Al2O3 Ratio on Crystallization and Luminescent Properties of Glass-Ceramics[J]. Wuhan Ligong Daxue Xuebao, 2009, 31(22): 12-15.

[32]

Sung Y-M, Park J S. Sintering and Crystallization of (SrO·SiO2)-(SrO·Al2O3·2SiO2) Glass-Ceramics[J]. J. Mater. Sci., 1999, 34(23): 5803-5809.

[33]

Ratnakaram Y, Naidu D T, Kumar A V, et al. Influence of Mixed Alkalies on Absorption and Emission Properties of Sm3+ Ions in Borate Glasses[J]. Physica B Condens. Matter., 2005, 358(1): 296-307.

[34]

Pan Z, James K, Cui Y, et al. Terbium-Activated Lithium-Lanthanum-Aluminosilicate Oxyfluoride Scintillating Glass and Glass-Ceramic[J]. Nucl. Instrum. Methods Phys. Res. A, 2008, 594(2): 215-219.

[35]

Tanabe S, Hayashi H, Hanada T, et al. Fluorescence Properties of Er3+ Ions in Glass Ceramics Containing LaF3 Nanocrystals[J]. Opt. Mater., 2002, 19(3): 343-349.

[36]

Paßlick C, Johnson J, Schweizer S. Crystallization Studies on Rare-Earth Co-Doped Fluorozirconate-Based Glasses[J]. J. Non-Cryst. Solids, 2013 37133-37136.

[37]

Fu F, Chen B, Shen L, et al. Multi-Channel Transition Emissions of Sm3+ in Lithium Yttrium Aluminum Silicate Glasses and Derived Opalescent Glass Ceramics[J]. J. Alloys Compd., 2014 582265-582272.

[38]

Rasool S N, Moorthy L R, Jayasankar C. Spectroscopic Investigation of Sm3+ Doped Phosphate Based Glasses for Reddish-Orange Emission[J]. Opt. Commun., 2013 311156-311162.

[39]

Lakshminarayana G, Yang R, Mao M, et al. Photoluminescence of Sm3+, Dy3+, and Tm3+-Doped Transparent Glass Ceramics Containing CaF2 Nanocrystals[J]. J. Non-Cryst. Solids, 2009, 355(52): 2668-2673.

AI Summary AI Mindmap
PDF

101

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/