Computer simulation of ions doped hydroxyapatite: A brief review

Menghao Wang , Qun Wang , Xiong Lu , Kefeng Wang , Fuzeng Ren

Journal of Wuhan University of Technology Materials Science Edition ›› 2017, Vol. 32 ›› Issue (4) : 978 -987.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2017, Vol. 32 ›› Issue (4) : 978 -987. DOI: 10.1007/s11595-017-1699-2
Biomaterials

Computer simulation of ions doped hydroxyapatite: A brief review

Author information +
History +
PDF

Abstract

A brief review of commonly encountered anions, cations and co-doped HA and Ca-deficient HA was given in the DFT studies. First, the charge compensation mechanism, the preference substitution sites and crystal structure changes of doped HA were described and discussed. And then conclusions were drawn and future challenges were discussed. The review is expected to provide theoretical guidance for the development of bioactive HA with special structures and functions.

Keywords

hydroxyapatite / ionic doping / ca-deficient hydroxyapatite / computer simulation

Cite this article

Download citation ▾
Menghao Wang, Qun Wang, Xiong Lu, Kefeng Wang, Fuzeng Ren. Computer simulation of ions doped hydroxyapatite: A brief review. Journal of Wuhan University of Technology Materials Science Edition, 2017, 32(4): 978-987 DOI:10.1007/s11595-017-1699-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Sun LJ, Guo DG, Zhao WA, et al. Influences of Reaction Parameters and Ce Contents on Structure and Properties of Nano-scale Ce-HA Powders[J]. J. Mater. Sci., 2014, 30: 776-781.

[2]

Yin MZ, Xu WG, Cun BC, et al. Effects of the Interaction between Hydroxyapatite Nanoparticles and Hepatoma Cells[J]. J. Wuhan Univ. Technol.-mater. Sci. Ed., 2014, 29: 635-642.

[3]

Liao L, Yang S, Richard J, et al. In vitro Characterization of PBLGg-HA/PLLA Nanocomposite Scaffolds[J]. J. Wuhan Univ. Technol.-Mater. Sci. Ed., 2014, 29: 841-847.

[4]

Koutsopoulos S. Synthesis and Characterization of Hydroxyapatite Crystals: A Review Study on the Analytical Methods[J]. J. Biomed. Mater. Res., 2002, 62: 600-612.

[5]

Mostafa NY, Brown PW. Computer Simulation of Stoichiometric Hydroxyapatite: Structure and Substitutions[J]. J. Phys. Chem. solids, 2007, 68: 431-437.

[6]

Becke AD. Perspective: Fifty Years of Density-Functional Theory in Chemical Physics[J]. J. Chem. Phys., 2014, 140: 18.

[7]

Dorozhkin SV, Epple M. Biological and Medical Significance of Calcium Phosphates[J]. Angew. Chem. Int. Edit., 2002, 41: 3130-3146.

[8]

Weiner S, Traub W. Bone-Structure -From Angstroms To Microns[J]. Faseb J, 1992, 6: 879-885.

[9]

Lu X, Zhao ZF, Leng Y. Calcium Phosphate Crystal Growth under Controlled Atmosphere in Electrochemical Deposition[J]. J. Cryst. Growth, 2005, 284: 506-516.

[10]

Ren FZ, Lu X, Leng Y. Ab Initio Simulation on the Crystal Structure and Elastic Properties of Carbonated Apatite[J]. J. Mech. Behav. Biomed. Mater., 2013, 26: 59-67.

[11]

Peroos S, Du ZM, de Leeuw NH. A Computer Modelling Study of the Uptake, Structure and Distribution of Carbonate Defects in Hydroxyapatite[J]. Biomaterials, 2006, 27: 2150-2161.

[12]

Astala R, Stott M. First Principles Investigation of Mineral Component of Bone: CO3 Substitutions in Hydroxyapatite[J]. Chem. Mater., 2005, 17: 4125-4133.

[13]

Pérezgranados AM, Vaquero MP. Silicon, Aluminium, Arsenic and Lithium: Essentiality and Human Health Implications.[J]. J. Nutr. Health Aging, 2002, 6: 154-162.

[14]

Carlisle EM. Silicon: A Possible Factor in Bone Calcification J]. Science (New York, NY)., 1970, 167: 279-280.

[15]

Munir G, Koller G, Di Silvio L, et al. The Pathway to Intelligent Implants: Osteoblast Response to Nano Silicon-Doped Hydroxyapatite Patterning[J]. J. R. Soc. Interface, 2011, 8: 678-688.

[16]

Lozano D, Feito MJ, Portal-Nunez S, et al. Osteostatin Improves the Osteogenic Activity of Fibroblast Growth Factor-2 Immobilized in Si-Doped Hydroxyapatite in Osteoblastic Cells[J]. Acta Biomater., 2012, 8: 2770-2777.

[17]

Astala R, Calderin L, Yin X, et al. Ab Initio Simulation of Si-Doped Hydroxyapatite[J]. Chem.Mater., 2006, 18: 413-422.

[18]

Chappell H, Bristowe P. Density Functional Calculations of the Properties of Silicon-Substituted Hydroxyapatite[J]. J. Mater. Sci.: Mater. Med., 2007, 18: 829-837.

[19]

De Leeuw NH. Density Functional Theory Calculations of Local Ordering of Hydroxy Groups and Fluoride Ions in Hydroxyapatite[J]. Phys.Chem.Chem. Phys., 2002, 4: 3865-3871.

[20]

De Leeuw NH. Resisting the Onset of Hydroxyapatite Dissolution through the Incorporation of Fluoride[J]. J.Phys. Chem. B, 2004, 108: 1809-1811.

[21]

De Leeuw NH. A Computer Modelling Study of the Uptake and Segregation of Fluoride Ions at the Hydrated Hydroxyapatite (0001) Surface: Introducing a Ca10(PO4)6 (OH)2 Potential Model[J]. Phys. Chem.Chem. Phys., 2004, 6: 1860-1866.

[22]

Tredwin CJ, Georgiou G, Kim HW, et al. Hydroxyapatite, Fluor-Hydroxyapatite and Fluorapatite Produced via the Sol-Gel Method: Bonding to Titanium and Scanning Electron Microscopy[J]. Dent. Mater., 2013, 29: 521-529.

[23]

Farzadi A, Bakhshi F, Solati-Hashjin M, et al. Magnesium Incorporated Hydroxyapatite: Synthesis and Structural Properties Characterization[J]. Ceram. Int., 2014, 40: 6021-6029.

[24]

Landi E, Logroscino G, Proietti L, et al. Biomimetic Mg-Substituted Hydroxyapatite: from Synthesis to in Vivo Behaviour[J]. J. Mater. Sci.: Mater..Med., 2008, 19: 239-247.

[25]

Ren FZ, Leng Y, Xin R, et al. Synthesis, Characterization and Ab Initio Simulation of Magnesium-Substituted Hydroxyapatite[J]. Acta Biomater., 2010, 6: 2787-2796.

[26]

Ren FZ, Xin R, Ge X, et al. Characterization and Structural Analysis of Zinc-substituted Hydroxyapatites[J]. Acta Biomater., 2009, 5: 3141-3149.

[27]

Almora-Barrios N, Grau-Crespo R, De Leeuw NH. A Computational Study of Magnesium Incorporation in the Bulk and Surfaces of Hydroxyapatite[J]. Langmuir, 2013, 29: 5851-5856.

[28]

Moonga BS, Dempster DW. Zinc is a Potent Inhibitor of Osteoclastic Bone Resorption in Vitro[J]. J. Bone and Miner. Res., 1995, 10: 453-457.

[29]

Windisch W. Homeostatic Reactions of Quantitative Zn Metabolism on Deficiency and Subsequent Repletion with Zn in 65Zn-Labeled Adult Rats[J]. Trace Elem. Electroly., 2001, 18: 122-128.

[30]

Nascimento L, Medeiros M, Calasans-Maia J, et al. Osseoinduction Evaluation of Hydroxyapatite and Zinc Containing Hydroxyapatite Granules in Rabbits[J]. Key Eng. Mat., 2012, 493–494: 252-257.

[31]

You ZL, Zhu HL. Syntheses, Crystal Structures, and Antibacterial Activities of Four Schiff Base Complexes of Copper and Zinc[J]. Z. Anorg. und Allg. Chem., 2004, 630: 2754-2760.

[32]

Cox SC, Jamshidi P, Grover LM, et al. Preparation and Characterisation of Nanophase Sr, Mg, and Zn Substituted Hydroxyapatite by Aqueous Precipitation[J]. Mat. Sci. Eng. C-Mater., 2014, 35: 106-114.

[33]

Kaygili O, Tatar C. The Investigation of Some Physical Properties and Microstructure of Zn-doped Hydroxyapatite Bioceramics Prepared by Sol-Gel Method[J]. J. Sol-Gel Sci. Techno., 2012, 61: 296-309.

[34]

Matsunaga K, Murata H, Mizoguchi T, et al. Mechanism of Incorporation of Zinc into Hydroxyapatite[J]. Acta Biomater., 2010, 6: 2289-2293.

[35]

Ma X, Ellis DE. Initial Stages of Hydration and Zn Substitution/Occupation on Hydroxyapatite (0001) Surfaces[J]. Biomaterials, 2008, 29: 257-265.

[36]

Ren FZ, Xin RL, Ge X, et al. An Experimental and Computational Study on Zn-Substituted Hydroxyapatite[J]. Adv. Mater. Res., 2008, 47–50: 1379-1382.

[37]

Biswas S, Becker U. Molecular Modeling of Cell Adhesion Peptides on Hydroxyapatite and TiO2 Surfaces: Implication in Biomedical Implant Device[J]. J. Biomater. Nanobiotechnol., 2013, 4: 351-356.

[38]

Wakamura M, Hashimoto K, Watanabe T. Photocatalysis by Calcium Hydroxyapatite Modified with Ti (IV): Albumin Decomposition and Bactericidal Effect[J]. Langmuir, 2003, 19: 3428-3431.

[39]

Yin S, Ellis DE. First-principles Investigations of Ti-Substituted Hydroxyapatite Electronic Structure[J]. Phys. Chem. Chem. Phys., 2010, 12: 156-163.

[40]

Zeglinski J, Nolan M, Bredol M, et al. Unravelling the Specific Site Preference in Doping of Calcium Hydroxyapatite with Strontium from Ab Initio Investigations and Rietveld Analyses[J]. Phys. Chem. Chem. Phys., 2012, 14: 3435-3443.

[41]

Terra J, Dourado ER, Eon JG, et al. The Structure of Strontium-Doped Hydroxyapatite: an Experimental and Theoretical Study[J]. Phys. Chem. Chem. Phys., 2009, 11: 568-577.

[42]

Bohner M, Tiainen H, Michel P, et al. Design of an Inorganic Dual-Paste Apatite Cement Using Cation Exchange[J]. J. Mater. Sci.: Mater. Med., 2015, 26: 1-13.

[43]

Claus M, Michael G, Jürgen G, et al. Chemical Characterization of Hydroxyapatite Obtained by Wet Chemistry in the Presence of V, Co, and Cu Ions[J]. Mat. Sci. Eng. C, 2013, 33: 1654-1661.

[44]

Zhang L, Li H, Li K, et al. Preparation and Characterization of Carbon/SiC Nanowire/Na-Doped Carbonated Hydroxyapatite Multilayer Coating for Carbon/Carbon Composites[J]. Appl. Surf. Sci., 2014, 313: 85-92.

[45]

De Leeuw NH. Density Functional Theory Calculations of Solid Solutions of Fluor-and Chlorapatites[J]. Chem. Mater., 2002, 14: 435-441.

[46]

Tamm T, Peld M. Computational Study of Cation Substitutions in Apatites[J]. J. Solid State Chem., 2006, 179: 1581-1587.

[47]

Ishikawa K, Ducheyne P, Radin S. Determination of the Ca/P Ratio in Calcium-deficient Hydroxyapatite Using X-ray Diffraction Analysis[J]. J. Mater. Sci.: Mater. Med., 1993, 4: 165-168.

[48]

Zahn D, Hochrein O. On the Composition and Atomic Arrangement of Calcium-deficient Hydroxyapatite: an Ab-initio Analysis[J]. J. Solid State Chem., 2008, 181: 1712-1716.

[49]

Zhu K, Yanagisawa K, Shimanouchi R, et al. Preferential Occupancy of Metal Ions in the Hydroxyapatite Solid Solutions Synthesized by Hydrothermal Method[J]. J. Eur. Ceram. Soc., 2006, 26: 509-513.

[50]

De Pablo JJ, Jones B, Lind C, et al. The Materials Genome Initiative, the Interplay of Experiment, Theory and Computation[J]. Curr. Opin. Solid State Mater. Sci., 2014, 18: 99-117.

AI Summary AI Mindmap
PDF

122

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/