Preparation and characterization of urea-formaldehyde resin/reactive montmorillonite composites

Shiwei Chen , Xuchen Lu , Feng Pan , Tizhuang Wang , Zhimin Zhang

Journal of Wuhan University of Technology Materials Science Edition ›› 2017, Vol. 32 ›› Issue (4) : 783 -790.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2017, Vol. 32 ›› Issue (4) : 783 -790. DOI: 10.1007/s11595-017-1668-9
Advanced Materials

Preparation and characterization of urea-formaldehyde resin/reactive montmorillonite composites

Author information +
History +
PDF

Abstract

The urea-formaldehyde resin/reactive montmorillonite composites were prepared by in situ polymerization. The reactive montmorillonite was prepared firstly by being ion exchanged with organic molecules and secondly by being grafted with silane coupling agent, which could be demonstrated by X-ray diffraction (XRD) and thermogravimetric analysis (TGA). Scanning electron microscopy (SEM) revealed that the morphology of the urea-formaldehyde resin/reactive montmorillonite composites were ellipsoid or columnar particles. Energy dispersive spectrometry (EDS) confirmed that the reactive montmorillonite was encapsulated by urea-formaldehyde resin. Differential scanning calorimetry (DSC) indicated that curing process of the urea-formaldehyde resin/reactive montmorillonite composites consumed more energy than pure urea-formaldehyde resin. Thermogravimetric analysis (TGA) showed that the thermal stability of the urea-formaldehyde resin/reactive montmorillonite composites improved compared to pure urea-formaldehyde resin. Furthermore, the reactive montmorillonites reduced the formaldehyde emission of the composites and increased the water resistance. Finally, the mechanism to prepare the urea-formaldehyde resin/reactive montmorillonite composites was proposed.

Keywords

composite / polycondensation / X-ray / morphology / thermal property

Cite this article

Download citation ▾
Shiwei Chen, Xuchen Lu, Feng Pan, Tizhuang Wang, Zhimin Zhang. Preparation and characterization of urea-formaldehyde resin/reactive montmorillonite composites. Journal of Wuhan University of Technology Materials Science Edition, 2017, 32(4): 783-790 DOI:10.1007/s11595-017-1668-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Pavlidou S, Papaspyrides C. A Review on Polymer-layered Silicate Nanocomposites[J]. Prog. Polym. Sci., 2008, 33(12): 1119-1198.

[2]

Sinha Ray S, Okamoto M. Polymer/layered Silicate Nanocomposites: A Review from Preparation to Processing[J]. Prog. Polym. Sci., 2003, 28(11): 1539-1641.

[3]

Alexandre M, Dubois P. Polymer-layered Silicate Nanocomposites: Preparation, Properties and Uses of a New Class of Materials[J]. Mater. Sci. Eng R: Reports., 2000, 28(1): 1-63.

[4]

Carrado KA. Synthetic Organo-and Polymer-clays: Preparation, Characterization, and Materials Applications[J]. Appl. Clay. Sci., 2000, 17(1-2): 1-23.

[5]

Letaïef S, Martín-Luengo MA, Aranda P, et al. A Colloidal Route for Delamination of Layered Solids: Novel Porous Clay Nanocomposites[J]. Adv. Funct. Mater., 2006, 16(3): 401-409.

[6]

Negrete-Herrera N, Putaux JL, David L, et al. Polymer/laponite Composite Colloids Through Emulsion Polymerization: Influence of The Clay Modification Level on Particle Morphology[J]. Macromolecules, 2006, 39(26): 9177-9184.

[7]

Zhao CG, Feng M, Gong FL, et al. Preparation and Characterization of Polyethylene-clay Nanocomposites by Using Chlorosilane-modified Clay[J]. J. Appl. Polym. Sci., 2004, 93(2): 676-680.

[8]

Cho J, Paul D. Nylon 6 Nanocomposites by Melt Compounding[J]. Polymer., 2001, 42(3): 1083-1094.

[9]

Tien Y, Wei K. High-tensile-property Layered Silicates/Polyurethane Nanocomposites by Using Reactive Silicates as Pseudo Chain Extenders[J]. Macromolecules, 2001, 34(26): 9045-9052.

[10]

Tong X, Zhao HC, Tang T, et al. Preparation and Characterization of Poly(ethyl acrylate)/bentonite Nanocomposites by in situ Emulsion Polymerization[J]. J. Polym. Sci, Part A: Polym. Chem., 2002, 40(11): 1706-1711.

[11]

Park C, Smith JG, Connell JW, et al. Polyimide/silica Hybrid-clay Nanocomposites[J]. Polymer, 2005, 46(23): 9694-9701.

[12]

Chattopadhyay D, Mishra AK, Sreedhar B, et al. Thermal and Viscoelastic Properties of Polyurethane-imide/clay Hybrid Coatings[J]. Polym. Degrad. Stab., 2006, 91(8): 1837-1849.

[13]

Wang L, Xie X, Su S, et al. A Comparison of the Fire Retardancy of Poly (methyl methacrylate) Using Montmorillonite, Layered Double Hydroxide and Kaolinite[J]. Polym. Degrad. Stab., 2010, 95(4): 572-528.

[14]

Modesti M, Lorenzetti A, Besco S, et al. Synergism between Flame Retardant and Modified Layered Silicate on Thermal Stability And Fire Behaviour of Polyurethane Nanocomposite Foams[J]. Polym. Degrad. Stab., 2008, 93(12): 2166-2171.

[15]

Lin KJ, Dai CA, Lin KF. Revisit to The Formation Mechanism of Exfoliated Montmorillonite/PMMA Nanocomposite Latex through Soap-Free Emulsion Polymerization[J]. J. Polym. Sci, Part A: Polym. Chem., 2008, 47(2): 459-466.

[16]

Zeng C, Lee LJ. Poly (methyl methacrylate) and Polystyrene/clay Nanocomposites Prepared by In-situ Polymerization[J]. Macromolecules, 2001, 34(12): 4098-4103.

[17]

Zhang W, Liang Y, Luo W, et al. Effects of Clay-modifying Agents on the Morphology and Properties of Poly (methyl methacrylate)/clay Nanocomposites Synthesized Via γ-ray Irradiation Polymerization[J]. J. Polym. Sci, Part A: Polym. Chem., 2003, 41(21): 3218-3226.

[18]

Park JH, Jana SC. Mechanism of Exfoliation of Nanoclay Particles in Epoxy-clay Nanocomposites[J]. Macromolecules, 2003, 36(8): 2758-2768.

[19]

Ha YH, Kwon Y, Breiner T, et al. An Orientationally Ordered Hierarchical Exfoliated Clay-block Copolymer Nanocomposite[J]. Macromolecules, 2005, 38(12): 5170-5179.

[20]

Wang D, Zhu J, Yao Q, et al. A Comparison of Various Methods for the Preparation of Polystyrene and Poly (methyl methacrylate) Clay Nanocomposites[J]. Chem. Mater., 2002, 14(9): 3837-3843.

[21]

Yeh JM, Liou SJ, Lin CY, et al. Anticorrosively Enhanced PMMA-clay Nanocomposite Materials with Quaternary Alkylphosphonium Salt as an Intercalating Agent[J]. Chem. Mater., 2002, 14(1): 154-161.

[22]

Chen X, Li C, Xu S, et al. Interfacial Adhesion and Mechanical Properties of PMMA-coated CaCO3 Nanoparticle Reinforced PVC Composites[J]. China. Particuology, 2006, 4(1): 25-30.

[23]

Cheng YY, Chou SC, Huang JH. Preparation and Characterization of Polyimide/silane Coupling Agent Modified Multiwall Carbon Nanotubes Composites[J]. J. Appl. Polym. Sci., 2012, 124(2): 1137-1143.

[24]

Roumeli E, Papadopoulou E, Pavlidou E, et al. Synthesis, Characterization and Thermal Analysis of Urea-Formaldehyde/nano SiO2 Resins[J]. Thermochim. Acta., 2012, 527: 33-9.

[25]

Zorba T, Papadopoulou E, Hatjiissaak A, et al. Urea-Formaldehyde Resins Characterized by Thermal Analysis and FTIR Method[J]. J. Therm. Anal. Calorim., 2008, 92(1): 29-33.

[26]

Samaržija-Jovanović S, Jovanović V, Konstantinović S, et al. Thermal Behavior of Modified Urea-formaldehyde Resins[J]. J. Therm. Anal. Calorim., 2011, 104(3): 1159-1166.

[27]

Ke Y, Wu T, Yan C, et al. Dispersion and Nucleation for Ultrafine Particles of Silica and Silicate in Poly(ethylene terephthalate) Based Composites[J]. China. Particuology., 2003, 1(6): 247-252.

[28]

De Maria A, Aurora A, Montone A, et al. Synthesis and Characterization of PMMA/silylated MMTs[J]. J. Nanopart. Res., 2011, 13(11): 6049-6058.

[29]

Siimer K, Kaljuvee T, Christjanson P. Thermal Behaviour of Urea-formaldehyde Resins during Curing[J]. J. Therm. Anal. Calorim., 2003, 72(2): 607-617.

AI Summary AI Mindmap
PDF

92

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/