Nature of the pull-out system of carbon nanorope/polyethylene composite and twisting effect on interfacial behavior

Junjun Shang , Qingsheng Yang , Yubin Lu

Journal of Wuhan University of Technology Materials Science Edition ›› 2017, Vol. 32 ›› Issue (3) : 713 -719.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2017, Vol. 32 ›› Issue (3) : 713 -719. DOI: 10.1007/s11595-017-1657-z
Organic Materials

Nature of the pull-out system of carbon nanorope/polyethylene composite and twisting effect on interfacial behavior

Author information +
History +
PDF

Abstract

The nature of the pull-out system of carbon nanorope/polyethylene (CNRP/PE) composite is studied by using molecular dynamics approach. The deformation of the CNRP/PE composites in pull-out process is exhibited. The influence of twisting deformation on the interfacial interaction of the composites is investigated. The results show that the energy of the pull-out system is conserved; and the interfacial bonding is weak resulting in a sliding failure of the CNRP inside PE matrix.

Keywords

carbon nanorope / nano-composite / pull-out system / fracture mechanism

Cite this article

Download citation ▾
Junjun Shang, Qingsheng Yang, Yubin Lu. Nature of the pull-out system of carbon nanorope/polyethylene composite and twisting effect on interfacial behavior. Journal of Wuhan University of Technology Materials Science Edition, 2017, 32(3): 713-719 DOI:10.1007/s11595-017-1657-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Iijima S, Ichihashi T. Single-Shell Carbon Nanotubes of 1-nm Diameter[J]. Nature, 1993, 363: 603-605.

[2]

Treacy M M J, Ebbesen T W, Gibson J M. Exceptionally High Young’s Modulus Observed for Individual Carbon Nanotubes[J]. Nature, 1996, 381: 678-680.

[3]

Wong E W, Sheehan P E, Lieber C M. Nanobeam Mechanics: Elasticity, Strength, and Toughness of Nanorods and Nanotubes[J]. Science, 1997, 277: 1971-1975.

[4]

Yang N, Xu X, Zhang G, et al. Thermal Transport in Nanostructures[J]. AIP Advances, 2012, 2(4): 041410

[5]

Kim P, Shi L, Majumdar A, et al. Thermal Transport Measurements of Individual Multiwalled Nanotubes[J]. Physical Review Letters, 2001, 87(21): 215502

[6]

Zhang G, Li B W. Thermal Conductivity of Nanotubes Revisited: Effects of Chirality, Isotope Impurity, Tube Length, and Temperature[J]. The Journal of Chemical Physics, 2005, 123(11): 114714

[7]

Maruyama S. A Molecular Dynamics Simulation of Heat Conduction of a Finite Length Single-Walled Carbon Nanotube[J]. Microscale Thermophysical Engineering, 2003, 7(1): 41-50.

[8]

Ata S, Mizuno T, Nishizawa A, et al. Influence of Matching Solubility Parameter of Polymer Matrix and CNT on Electrical Conductivity of CNT/Rubber Composite[J]. Scientific Reports, 2014, 4: 7232-7239.

[9]

Koziol K, Vilatela J, Moisala A, et al. High-Performance Carbon Nanotube Fiber[J]. Science, 2007, 318(5858): 1892

[10]

Nakamoto H, Ootaka H, Tada M, et al. Stretchable Strain Sensor Based on a Real Change of Carbon Nanotube Electrode[J]. Science, 2015, 15(4): 2212

[11]

Wang Q. Atomic Transportation via Carbon Nanotubes[J]. Nano Letters, 2009, 9: 245-249.

[12]

Wu N, Wang Q, Arash B. Ejection of DNA Molecules from Carbon Nanotubes[J]. Carbon, 2012, 50: 4945-4952.

[13]

Li M, Myers E B, Tang H, et al. Nano Electromechanical Resonator Arrays for Ultrafast, Gas-Phase Chromatographic Chemical Analysis[J]. Nano Letters, 2010, 10: 3899-3903.

[14]

Gojny F H, Wichmann M H G, Fiedler B, et al. Influence of Nano- Modification on Themechanical and Electrical Properties of Conventional Fibre Reinforced Composites[J]. Composites Part A, 2005, 36(11): 1525-1535.

[15]

Arash B, Wang Q. Mechanical Properties of Carbon Nanotube/Polymer Composites[J]. Scientific Reports, 2014, 4: 6479-6486.

[16]

Zhu R, Pan E, Roy A K. Molecular Dynamics Study of the Stress- Strain Behavior of Carbon-Nanotube Reinforced Epon 862 Composites[J]. Materials Science and Engineering A, 2007, 447: 51-57.

[17]

Najafi E, Kim J Y, Han S H, et al. UV-Ozone Treatment of Multi- Walled Carbon Nanotubes for Enhanced Organic Solvent Dispersion[J]. Colloids and Surfaces A, 2006, 284–285: 373-378.

[18]

Needleman A, Borders T, Brinson L C, et al. Effect of an Interphase Region on Debonding of a CNT Reinforced Polymer Composite[J]. Journal of Computer Science and Technology, 2010, 70: 2207-2215.

[19]

Tsai J L, Tzeng S H, Chiu Y T. Characterizing Elastic Properties of Carbon Nanotubes/Polyimide Nanocomposites Using Multi-Scale Simulation[J]. Composites Part B-Engineering, 2010, 41(1): 106-115.

[20]

Shokrieh M M, Rafiee R. Prediction of Mechanical Properties of an Embedded Carbon Nanotube in Polymer Matrix Based on Developing an Equivalent Long Fiber[J]. Mechanics Research Communications, 2010, 37(2): 235-240.

[21]

Hu N, Fukunaga H, Lu C, et al. Prediction of Elastic Properties of Carbon Nanotube Reinforced Composites[J]. Proceedings of the Royal Society A, 2005, 461(2058): 1685-1710.

[22]

Pissis P, Fragiadakis D, Kanapitsas A, et al. Broadband Dielectric Relaxation Spectroscopy in Polymer Nanocomposites[J]. Macromolecular Symposia, 2008, 265: 285-293.

[23]

Eitan A, Fisher F T, Andrews R, et al. Reinforcement Mechanisms in MWCNT-Filled Polycarbonate[J]. Composites Science and Technology, 2006, 66: 1159-1170.

[24]

Qian D, Dickey E C, Andrews R, et al. Load Transfer and Deformation Mechanisms in Carbon Nanotube-Polystyrene Composites[J]. Applied Physics Letters, 2000, 76: 2868.

[25]

Gou J, Minaie B, Wang B, et al. Computational and Experimental Study of Interfacial Bonding of Single-Walled Nanotube Reinforced Composites[J]. Computational Materials Science, 2004, 31: 225-236.

[26]

Lin R M, Lu C. Modeling of Interfacial Friction Damping of Carbon Nanotube-Based Nanocomposites[J]. Mechanical Systems and Signal Processing, 2010, 24: 2996-3012.

[27]

Stuart S J, Tutein A B, Harrison J A. A Reactive Potential for Hydrocarbons with Intermolecular Interactions[J]. The Journal of Chemical Physics, 2000, 112: 6472-6486.

[28]

Griebel M, Hamaekers J. Molecular Dynamics Simulations of the Elastic Moduli of Polymer-Carbon Nanotube Composites[J]. Computer Methods in Applied Mechanics Engineering, 2004, 193: 1773-1788.

[29]

Brenner D W, Shenderova O A, Harrison J A, et al. Second Generation Reactive Empirical Bond Order (REBO) Potential Energy Expression for Hydrocarbons[J]. Journal of Physics, 2002, 14: 783-802.

[30]

Bohlen M, Bolton K. Molecular Dynamics Studies of the Influence of Single Wall Carbon Nanotubes on the Mechanical Properties of Poly (Vinylidene Fluoride)[J]. Computational Materials Science, 2013, 68: 73-80.

[31]

Griebel M, Hamaekers J. Molecular Dynamics Simulations of the Elastic Moduli of Polymer-Carbon Nanotube Composites[J]. Computer Methods in Applied Mechanics Engineering, 2004, 193: 1773-1788.

[32]

Gao S, Madre E. Characterization of Interphase Nanoscale Property Variation in Glass Fiber Reinforced Polypropylene and Epoxy Resin Composites[J]. Composite Part A: Applied Science and Manufacturing, 2002, 33: 559-576.

AI Summary AI Mindmap
PDF

132

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/