PDF
Abstract
The element Ni in the Mg2Ni alloy is partially substituted by M (M = Cu, Co, Mn) in order to ameliorate the electrochemical hydrogen storage performances of Mg2Ni-type electrode alloys. The nanocrystalline and amorphous Mg20Ni10-xM x (M = None, Cu, Co, Mn; x = 0-4) alloys were prepared by melt spinning. The effects of the M (M = Cu, Co, Mn) content on the structures and electrochemical hydrogen storage characteristics of the as-cast and spun alloys were comparatively studied. The analyses by XRD, SEM and HRTEM reveal that all the as-cast alloys have a major phase of Mg2Ni but the M (M = Co, Mn) substitution brings on the formation of some secondary phases, MgCo2 and Mg for the (M = Co) alloy, and MnNi and Mg for the (M = Mn) alloy. Besides, the as-spun (M = None, Cu) alloys display an entirely nanocrystalline structure, whereas the as-spun (M = Co, Mn) alloys hold a nanocrystalline/amorphous structure, suggesting that the substitution of M (M = Co, Mn) for Ni facilitates the glass formation in the Mg2Ni-type alloys. The electrochemical measurements indicate that the variation of M (M = Cu, Co, Mn) content engenders an obvious effect on the electrochemical performances of the as-cast and spun alloys. To be specific, the cyclic stabilities of the alloys augment monotonously with increasing M (M = Cu, Co, Mn) content, and the capacity retaining rate (S20) is in an order of (M = Cu) > (M = Co) > (M = Mn) > (M = None) for x≤1 but changes to (M = Co) > (M = Mn) > (M = Cu) > (M = None) for x≥2. The discharge capacities of the as-cast and spun alloys always grow with the rising of M (M = Co, Mn) content but first mount up and then go down with increasing M (M = Cu) content. Whatever the M content is, the discharge capacities are in sequence: (M = Co) > (M = Mn) > (M = Cu) > (M = None). The high rate discharge abilities (HRDs) of all the alloys grow clearly with rising M (M = Cu, Co) content except for (M = Mn) alloy, whose HRD has a maximum value with varying M (M = Mn) content. Furthermore, for the as-cast alloys, the HRD is in order of (M = Co) > (M = Mn) > (M = Cu) > (M = None), while for the as-spun (20 m·s-1) alloys, it changes from (M = Co) > (M = Mn) > (M = Cu) > (M = None) for x = 1 to (M = Cu) > (M = Co) > (M = None) > (M = Mn) for x = 4.
Keywords
Mg2Ni-type alloy
/
element substitution
/
melt spinning
/
nanocrystalline and amorphous
/
electrochemical performances
Cite this article
Download citation ▾
Yanghuan Zhang, Zeming Yuan, Tai Yang, Tinging Zhai, Zhuocheng Liu, Shihai Guo.
Highly improved electrochemical performances of the nanocrystalline and amorphous Mg2Ni-type alloys by substituting Ni with M (M = Cu, Co, Mn).
Journal of Wuhan University of Technology Materials Science Edition, 2017, 32(3): 685-694 DOI:10.1007/s11595-017-1653-3
| [1] |
Ebrahimi-Purkani A, Kashani-Bozorg S F. Nanocrystalline Mg2Ni-Based Powders Produced by High-energy Ball Milling and Subsequent Annealing[J]. J. Alloy Compd., 2008, 456(1–2): 211-215.
|
| [2] |
Chandra D, Sharma A, Chellappa R, et al. Hydriding and Structural Characteristics of Thermally Cycled and Cold-worked V-0.5 at%C Alloy[J]. J. Alloy Compd., 2008, 452(2): 312-324.
|
| [3] |
Xie D H, Li P, Zeng C X, et al. Effect of Substitution of Nd for Mg on the Hydrogen Storage Properties of Mg2Ni Alloy[J]. J. Alloy Compd., 2009, 478(1–2): 96-102.
|
| [4] |
Spassov T, Lyubenova L, Köster U, et al. Mg-Ni-RE Nanocrystalline Alloys for Hydrogen Storage[J]. Mater. Sci. Eng. A, 2004, 375–377: 794-799.
|
| [5] |
Woo J H, Lee K S. Electrode Characteristics of Nanostructured Mg2Ni-Type Alloys Prepared by Mechanical Alloying[J]. J. Electrochem. Soc., 1999, 146(3): 819-823.
|
| [6] |
Hao G, Zhu Y F, Li L Q. Hydrogen Storage Properties of Mg-Ni-Cu Prepared by Hydriding Combustion Synthesis and Mechanical Milling (HCS+MM)[J]. Int. J. Hydrogen Energy, 2009, 34(6): 2654-2660.
|
| [7] |
Wu M S, Wu H R, Wang Y Y, et al. Surface Treatment for Hydrogen Storage Alloy of Nickel/Metal Hydride Battery[J]. J. Alloys Compd., 2000, 302(1–2): 248-257.
|
| [8] |
Lü G L, Chen L S, Wang L B, et al. Study on the Phase Composition of Mg2-xMxNi (M = Al, Ti) Alloys[J]. J. Alloys Compd., 2001, 321(1): L1-L4.
|
| [9] |
Crivello J C, Nobuki T, Kuji T. Improvement of Mg-Al Alloys for Hydrogen Storage Applications[J]. Int. J. Hydrogen Energy, 2009, 34(4): 1937-1943.
|
| [10] |
Todorova S, Spassov T. Mg6Ni Formation in Rapidly Quenched Amorphous Mg-Ni Alloys[J]. J. Alloys Compd., 2009, 469(1–2): 193-196.
|
| [11] |
Liang G Y, Wu D C, Li L, et al. A Discussion on Decay of Discharge Capacity for Amorphous Mg-Ni-Nd Hydrogen Storage Alloy[J]. J. Power Sources, 2009, 186(2): 528-531.
|
| [12] |
Jurczyk M, Smardz L, Okonska I, et al. Nanoscale Mg-based Materials for Hydrogen Storage[J]. Int. J. Hydrogen Energy, 2008, 33(1): 374-380.
|
| [13] |
Simicic M V, Zdujic M, Dimitrijevic R, et al. Hydrogen Absorption and Electrochemical Properties of Mg2Ni-type Alloys Synthesized by Mechanical Alloying[J]. J. Power Sources, 2006, 158(1): 730-734.
|
| [14] |
Zhang Y H, Liu Z C, Li B W, et al. Structure and Electrochemical Performances of Mg2Ni1-xMnx (x = 0–0.4) Electrode Alloys Prepared by Melt Spinning[J]. Electrochim. Acta, 2010, 56(1): 427-434.
|
| [15] |
Liu Y F, Pan H G, Gao M X, et al. Hydrogen Storage and Electrochemical Properties of the La0.7Mg0.3Ni3.825-xCo0.675Mnx Hydrogen Storage Electrode Alloys[J]. J. Alloy Compd., 2004, 365(1–2): 246-252.
|
| [16] |
Xie D H, Li P, Zeng C X, et al. Effect of Substitution of Nd for Mg on the Hydrogen Storage Properties of Mg2Ni Alloy[J]. J. Alloy Compd., 2009, 478(1–2): 96-102.
|
| [17] |
Zhang Y H, Qi Y, Ma Z H, et al. Investigation on Electrochemical Performances of Melt-spun Nanocrystalline and Amorphous Mg2Ni1-x Mnx (x = 0–0.4) Electrode Alloys[J]. Int. J. Hydrogen Energy, 2010, 35(20): 11025-11034.
|
| [18] |
Liu Y F, Cao Y H, Huang L, et al. Rare Earth-Mg-Ni-based Hydrogen Storage Alloys as Negative Electrode Materials for Ni/MH Batteries[J]. J. Alloy Compd., 2011, 509(3): 675-686.
|
| [19] |
Huang L J, Liang G Y, Sun Z B, et al. Electrode Properties of Meltspun Mg-Ni-Nd Amorphous Alloys[J]. J. Power Sources, 2006, 160(1): 684-687.
|
| [20] |
Woo J H, Lee K S. Electrode Characteristics of Nanostructured Mg2Ni- Type Alloys Prepared by Mechanical Alloying[J]. J. Electrochem. Soc., 1999, 146(3): 819-823.
|
| [21] |
Pan H G, Chen N, Gao M X, et al. Effects of Annealing Temperature on Structure and the Electrochemical Properties of La0.7Mg0.3Ni2.45Co0.75 Mn0.1Al0.2 Hydrogen Storage Alloy[J]. J. Alloy Compd., 2005, 397(1–2): 306-312.
|
| [22] |
Kuriyama N, Sakai T, Miyamura H, et al. Electrochemical Impedance and Deterioration Behavior of Metal Hydride Electrodes[J]. J. Alloy Compd., 1993, 202(1–2): 183-197.
|
| [23] |
Zheng G, Popov B N, White R E. Electrochemical Determination of the Diffusion Coefficient of Hydrogen Through an LaNi4.25Al0.75 Electrode in Alkaline Aqueous Solution[J]. J. Electrochem. Soc., 1995, 142(8): 2695-2698.
|
| [24] |
Zhang Y H, Li B W, Ren H P, et al. Cycle Stabilities of the La0.7Mg0.3Ni2.55-xCo0.45Mx (M = Fe, Mn, Al; x = 0, 0.1) Electrode Alloys Prepared by Casting and Rapid Quenching[J]. J. Alloy Compd., 2008, 458(1–2): 340-345.
|