Mechanistic studies of atmospheric corrosion behavior of Al and Al-based alloys in a tropical marine environment

Zhongyu Cui , Feng Ge , Xiaogang Li , Min Zhu , Kui Xiao , Chaofang Dong , Xin Wang

Journal of Wuhan University of Technology Materials Science Edition ›› 2017, Vol. 32 ›› Issue (3) : 633 -639.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2017, Vol. 32 ›› Issue (3) : 633 -639. DOI: 10.1007/s11595-017-1645-3
Metallic Materials

Mechanistic studies of atmospheric corrosion behavior of Al and Al-based alloys in a tropical marine environment

Author information +
History +
PDF

Abstract

Atmospheric corrosion behavior of pure Al 1050A, 5A02 and 6A02 aluminum alloys exposed to a tropical marine environment for 4 years was investigated. Synergetic effect of Cl- deposition rate and time of wetness resulted in an abnormal increase in weight loss and a significant fluctuation in corrosion rate. Pitting corrosion occurred on the three metals. Pits on 5A02 alloy were easy to initiate and inclined to propagate laterally to form higher corrosion area and shallower corrosion pits, while pits on 6A02 alloy presented the opposite appearances. This was further confirmed by the cyclic polarization experiments.

Keywords

aluminum / atmospheric corrosion / pitting corrosion

Cite this article

Download citation ▾
Zhongyu Cui, Feng Ge, Xiaogang Li, Min Zhu, Kui Xiao, Chaofang Dong, Xin Wang. Mechanistic studies of atmospheric corrosion behavior of Al and Al-based alloys in a tropical marine environment. Journal of Wuhan University of Technology Materials Science Edition, 2017, 32(3): 633-639 DOI:10.1007/s11595-017-1645-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Romhanji E, Popovic M. Problems and Prospect of Al-Mg Alloys Application in Marine Constructions[J]. Metalurgija, 2006, 12(4): 297-307.

[2]

Kwon K, Frangopol D M. Fatigue Life Assessment and Lifetime Management of Aluminum Ships Using Life-cycle Optimization[J]. J. Ship Res., 2012, 56(2): 91-105.

[3]

Sielski R A. Research Needs in Aluminum Structure[J]. Ships Offshore Struc., 2008, 1(3): 57-65.

[4]

Szklarska-Smialowska Z. Pitting Corrosion of Aluminum[J]. Corros. Sci., 1999, 41(9): 1743-1767.

[5]

McCafferty E. Sequence of Steps in the Pitting of Aluminum by Chloride Ions[J]. Corros. Sci., 2003, 45(7): 1421-1438.

[6]

Frankel G S. Pitting Corrosion of Metals a Review of the Critical Factors[J]. J. Electrochem. Soc., 1998, 145(6): 2186-2198.

[7]

Boag A, Taylor R, Muster T, et al. Stable Pit Formation on AA2024-T3 in a NaCl Environment[J]. Corros. Sci., 2010, 52(1): 90-103.

[8]

Boag A, Hughes A, Glenn A, et al. Corrosion of AA2024-T3 Part I: Localised Corrosion of Isolated IM Particles[J]. Corros. Sci., 2011, 53(1): 17-26.

[9]

Aballe A, Bethencourt M, Botana F, et al. Localized Alkaline Corrosion of Alloy AA5083 in Neutral 3.5% NaCl Solution[J]. Corros. Sci., 2001, 43(9): 1657-1674.

[10]

Eckermann F, Suter T, Uggowitzer PJ, et al. The Influence of MgSi Particle Reactivity and Dissolution Processes on Corrosion in Al-Mg-Si Alloys[J]. Electrochim. Acta, 2008, 54(2): 844-855.

[11]

Yasakau K A, Zheludkevich M L, Lamaka S V, et al. Role of Intermetallic Phases in Localized Corrosion of AA5083[J]. Electrochim. Acta, 2007, 52(27): 7651-7659.

[12]

De la Fuente D, Otero-Huerta E, Morcillo M. Studies of Long-term Weathering of Aluminium in the Atmosphere[J]. Corros. Sci., 2007, 49(7): 3134-3148.

[13]

Liu Y, Wang Z, Ke W. Study on Influence of Native Oxide and Corrosion Products on Atmospheric Corrosion of Pure Al[J]. Corros. Sci., 2014, 80: 169-176.

[14]

Kim Y, Buchheit R G. A Characterization of the Inhibiting Effect of Cu on Metastable Pitting in Dilute Al-Cu Solid Solution Alloys[J]. Electrochim. Acta, 2007, 52(7): 2437-2446.

[15]

Mukhopadhyay A. Selection and Design Principles of Wrought Aluminium Alloys for Structural Applications[J]. Mater. Sci. Forum, 2012, 710: 50-65.

[16]

Cui Z Y, Li X G, Xiao K, et al. Corrosion Behavior of Field-exposed Zinc in a Tropical Marine Atmosphere[J]. Corrosion, 2014, 70(7): 731-748.

[17]

International Organization for Standardization. Corrosion of Metals and Alloys-Classification of Corrosivity of Atmospheres, 1992

[18]

Schindelholz E, Kelly R, Cole I S, et al. Comparability and Accuracy of Time of Wetness Sensing Methods Relevant for Atmospheric Corrosion[J]. Corros. Sci., 2013, 67: 233-241.

[19]

Cole I S, Ganther W, Sinclair J, et al. A Study of the Wetting of Metal Surfaces in Order to Understand the Processes Controlling Atmospheric Corrosion[J]. J. Electrochem. Soc., 2004, 151(12): B627-B635.

[20]

Cole I S, Ganther W. Experimental Determination of Duration of Wetness on Metal Surfaces[J]. Corros. Eng. Sci. Technol., 2008, 43(2): 156-162.

[21]

Corvo F, Pérez T, Martin Y, et al. Time of Wetness in Tropical Climate: Considerations on the Estimation of TOW According to ISO 9223 Standard[J]. Corros. Sci., 2008, 50(1): 206-219.

[22]

International Organization for Standardization. Corrosion of Metals and Alloys-Corrosivity of Atmospheres-Measurement of Pollution, 1992

[23]

Cui Z Y, Li X G, Xiao K, et al. Atmospheric Corrosion of Fieldexposed AZ31 Magnesium in a Tropical Marine Environment[J]. Corros. Sci., 2013, 76: 243-256.

[24]

Ma Y, Li Y, Wang F. The Effect of β-FeOOH on the Corrosion Behavior of Low Carbon Steel Exposed in Tropic Marine Environment[J]. Mater. Chem. Phy., 2008, 112(3): 844-852.

[25]

Ma Y, Li Y, Wang F. The Atmospheric Corrosion Kinetics of Low Carbon Steel in a Tropical Marine Environment[J]. Corros. Sci., 2010, 52(5): 1796-1800.

[26]

Ma Y, Li Y, Wang F. Corrosion of Low Carbon Steel in Atmospheric Environments of Different Chloride Content[J]. Corros. Sci., 2009, 51(5): 997-1006.

[27]

Sun S, Zheng Q, Li D, et al. Long-term Atmospheric Corrosion Behaviour of Aluminium Alloys 2024 and 7075 in Urban, Coastal and Industrial Environments[J]. Corros. Sci., 2009, 51(4): 719-727.

[28]

Dan Z, Muto I, Hara N. Effects of Environmental Factors on Atmospheric Corrosion of Aluminium and Its Alloys Under Constant Dew Point Conditions[J]. Corros. Sci., 2012, 57: 22-29.

[29]

Graedel T E. Corrosion Mechanisms for Aluminum Exposed to the Atmosphere[J]. J. Electrochem. Soc., 1989, 136(4): 204

[30]

Trueba M, Trasatti S P. Study of Al Alloy Corrosion in Neutral NaCl by the Pitting Scan Technique[J]. Mater. Chem. Phy., 2010, 121(3): 523-533.

[31]

Shibata T, Takeyama T. Stochastic Theory of Pitting Corrosion[J]. Corrosion, 1977, 33(7): 243-251.

[32]

Gupta R, Sukiman N, Cavanaugh M, et al. Metastable Pitting Characteristics of Aluminium Alloys Measured Using Current Transients During Potentiostatic Polarisation[J]. Electrochim. Acta, 2012, 66: 245-254.

[33]

Zhang T, Yang Y, Shao Y, et al. A Stochastic Analysis of the Effect of Hydrostatic Pressure on the Pit Corrosion of Fe-20Cr Alloy[J]. Electrochim. Acta, 2009, 54(15): 3915-3922.

[34]

Townsend H E, Zoccola J C. STP767, 1982

[35]

Cui Z Y, Li X G, Xiao K, et al. Atmospheric Corrosion Behaviour of Pure Al 1060 in Tropical Marine Environment[J]. Corros. Eng. Sci. Technol., 2015, 50(6): 438-448.

[36]

De la Fuente D, Díaz I, Simancas J, et al. Long-term Atmospheric Corrosion of Mild Steel[J]. Corros. Sci., 2011, 53(2): 604-617.

[37]

Cao C N. Material Natural Environmental Corrosion of China, 2005 Beijing: Chemistry Industry Press.

[38]

Amin M A. Metastable and Stable Pitting Events on Al Induced by Chlorate and Perchlorate Anions-Polarization, XPS and SEM Studies[J]. Electrochim. Acta, 2009, 54(6): 1857-1863.

[39]

Trueman A R. Determining the Probability of Stable Pit Initiation on Aluminium Alloys Using Potentiostatic Electrochemical Measurements[J]. Corros. Sci., 2005, 47(9): 2240-2256.

[40]

Zaid B, Saidi D, Benzaid A, et al. Effects of pH and Chloride Concentration on Pitting Corrosion of AA6061 Aluminum Alloy[J]. Corros. Sci., 2008, 50(7): 1841-1847.

AI Summary AI Mindmap
PDF

100

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/