Tunable electronic and magnetic properties from structure phase transition of layered vanadium diselenide

Hui Zhang , Liting Sun , Yumei Dai , Chuanjia Tong , Xiao Han

Journal of Wuhan University of Technology Materials Science Edition ›› 2017, Vol. 32 ›› Issue (3) : 574 -578.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2017, Vol. 32 ›› Issue (3) : 574 -578. DOI: 10.1007/s11595-017-1636-4
Advanced Materials

Tunable electronic and magnetic properties from structure phase transition of layered vanadium diselenide

Author information +
History +
PDF

Abstract

The atomic geometry, structure stability, electronic and magnetic properties of VSe2 were systematically investigated based on the density functional theory (DFT). Varying from 3D to 2D four VSe2 structures, bulk 2H-VSe2 and 1T-VSe2, monolayer H-VSe2 and T-VSe2 are all demonstrated as thermodynamically stable by lattice dynamic calculations. More interestingly, the phase transition temperature is dramatically different due to the lattice size. Finally, owing to different crystal structures, H-VSe2 is semimetallic whereas T-VSe2 is totally metallic and also they have different magnetic moments. Our main argument is that being exfoliated from bulk to monolayer, 2H-VSe2 transforms to T-VSe2, accompanied by both semimetallic-metallic transition and dramatic magnetic moment variation. Our calculations provide a novel structure phase transition and an efficient way to modulate the electronic structure and magnetic moment of layered VSe2, which suggests potential applications as high-performance functional nanomaterial.

Keywords

density functional theory / vanadium diselenide / structure phase transition / magnetic property

Cite this article

Download citation ▾
Hui Zhang, Liting Sun, Yumei Dai, Chuanjia Tong, Xiao Han. Tunable electronic and magnetic properties from structure phase transition of layered vanadium diselenide. Journal of Wuhan University of Technology Materials Science Edition, 2017, 32(3): 574-578 DOI:10.1007/s11595-017-1636-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Yin W-J, Xie Y-E, Liu L-M, et al. R-graphyne: A New Two-Dimensional Carbon Allotrope with Versatile Dirac-Like Point in Nanoribbons[J]. J. Mater. Chem. A, 2013, 1: 5341-5346.

[2]

Gao JF, Zhao JJ, Ding F. Transition Metal Surface Passivation Induced Graphene Edge Reconstruction[J]. J. Am. Chem. Soc., 2012, 134: 6204-6209.

[3]

Novoselov KS, Falko VI, Colombo L, et al. A Roadmap for Graphene[J]. Nature, 2012, 490: 192-200.

[4]

Li WF, Guo M, Zhang G, et al. Gapless MoS2 Allotrope Possessing both Massless Dirac and Heavy Fermions[J]. Phys. Rev. B, 2014, 89: 205402.

[5]

Braga D, Gutiérrez Lezama I, Berger H, et al. Quantitative Determination of the Band-Gap of WS2 with Ambipolar Ionic Liquid- Gated Transistors[J]. Nano Lett., 2012, 12: 5218-5223.

[6]

Shi H, Pan H, Zhang Y-W, et al. Quasiparticle Band Structures and Optical Properties of Strained Monolayer MoS2 and WS2[J]. Phys. Rev. B, 2013, 87: 155304.

[7]

Ataca C, Sahin H, Ciraci S. Stable, Single-Layer MX2 Transition-Metal Oxides and Dichalcogenides in a Honeycomb-Like Structure[J]. J. Phys. Chem. C, 2012, 116: 8983-8999.

[8]

Zhang H, Zhang Y-N, Liu H, et al. Novel Heterostructures by Stacking Layered Molybdenum Disulfides and Nitrides for Solar Energy Conversion[J]. J. Mater. Chem. A, 2014, 2: 15389-15395.

[9]

Appel AM, Du Bois DL, Du Bois RM. Molybdenum-Sulfur Dimers as Electrocatalysts for the Production of Hydrogen at Low Overpotentials[J]. J. Am. Chem. Soc., 2005, 127: 12717-12726.

[10]

Jaramillo TF, JØrgensen KP, Bonde J, et al. Identification of Active Edge Sites for Electrochemical H2 Evolution from MoS2 Nanocatalysts[J]. Science, 2007, 317: 100-102.

[11]

Karunadasa HI, Montalvo E, Sun Y, et al. A Molecular MoS2 Edge Site Mimic for Catalytic Hydrogen Generation[J]. Science, 2012, 335: 698-702.

[12]

Zong X, Yan HJ, Wu GP, et al. Enhancement of Photocatalytic H2 Evolution on CdS by Loading MoS2 as Cocatalyst under Visible Light Irradiation[J]. J. Am. Chem. Soc., 2008, 130: 7176-7177.

[13]

Chang K, Chen WX. l-Cysteine-Assisted Synthesis of Layered MoS2/Graphene Composites with Excellent Electrochemical Performances for Lithium Ion Batteries[J]. ACS Nano, 2011, 5: 4720-4728.

[14]

Chhowalla M, Shin HS, Eda G, et al. The Chemistry of Two- Dimensional Layered Transition Metal Dichalcogenide Nanosheets[J]. Nat. Chem., 2013, 5: 263-275.

[15]

Chen J-R, Odenthal PM, Swartz AG, et al. Control of Schottky Barriers in Single Layer MoS2 Transistors with Ferromagnetic Contacts[J]. Nano Lett., 2013, 13: 3106-3110.

[16]

Coleman JN, Lotya M, O’Neill A, et al. Two-Dimensional Nanosheets Produced by Liquid Exfoliation of Layered Materials[J]. Science, 2011, 331: 568-571.

[17]

Dumcenco DO, Kobayashi H, Liu Z, et al. Visualization and Quantification of Transition Metal Atomic Mixing in Mo1-xWxS2 Single Layers[J]. Nature Commun., 2013, 4: 1351.

[18]

Chen YF, Xi JY, Dumcenco DO, et al. Tunable Band-Gap Photoluminescence from Atomically Thin Transition-Metal Dichalcogenide Alloys[J]. ACS Nano, 2013, 7: 4610-4616.

[19]

Ma YD, Dai Y, Guo M, et al. Electronic and Magnetic Properties of Perfect, Vacancy-doped, and Nonmetal Adsorbed MoSe2, MoTe2 and WS2 Monolayers[J]. Phys. Chem. Chem. Phys., 2011, 13: 15546-15553.

[20]

Li YF, Zhou Z, Zhang SB, et al. MoS2 Nanoribbons: High Stability and Unusual Electronic and Magnetic Properties[J]. J. Am. Chem. Soc., 2008, 130: 16739-16744.

[21]

Huang X, Zeng Z, Zhang H. Metal Dichalcogenide Nanosheets: Preparation, Properties and Applications[J]. Chem. Soc. Rev., 2013, 42: 1934-1946.

[22]

Duerloo K-AN, Li Y, Reed EJ. Structural Phase Transitions in Twodimensional Mo- and W-Dichalcogenide Monolayers[J]. Nature Commun., 2014, 5

[23]

Mak KF, Lee C, Hone J, et al. Atomically Thin MoS2: A New Direct-Gap Semiconductor[J]. Phys. Rev. Lett., 2010, 105: 136805.

[24]

Feng J, Sun X, Wu C, et al. Metallic Few-Layered VS2 Ultrathin Nanosheets: High Two-Dimensional Conductivity for In-Plane Supercapacitors[J]. J. Am. Chem. Soc., 2011, 133: 17832-17838.

[25]

Ma YD, Dai Y, Guo M, et al. Evidence of the Existence of Magnetism in Pristine VX2 Monolayers (X = S, Se) and Their Strain-Induced Tunable Magnetic Properties[J]. ACS Nano, 2012, 6: 1695-1701.

[26]

Feng J, Peng L, Wu C, et al. Giant Moisture Responsiveness of VS2 Ultrathin Nanosheets for Novel Touchless Positioning Interface[J]. Adv. Mater., 2012, 24: 1969-1974.

[27]

Xu K, Chen P, Li X, et al. Ultrathin Nanosheets of Vanadium Diselenide: A Metallic Two-Dimensional Material with Ferromagnetic Charge-Density-Wave Behavior[J]. Angew. Chem. Int. Ed., 2013, 52: 10477-10481.

[28]

Zhang H, Liu L-M, Lau W-M. Dimension-Dependent Phase Transition and Magnetic Property of VS2[J]. J. Mater. Chem. A, 2013, 1: 10821-10828.

[29]

Kresse G, Joubert D. From Ultrasoft Pseudopotentials to the Projector Augmented-wave Method[J]. Phys. Rev. B, 1999, 59: 1758-1775.

[30]

Kresse G, Furthmüller J. Efficient Iterative Schemes for Ab Initio Totalenergy Calculations Using a Plane-wave Basis Set[J]. Phys. Rev. B, 1996, 54: 11169-11186.

[31]

Kresse G, Furthmüller J. Efficiency of Ab-initio Total Energy Calculations for Metals and Semiconductors Using a Plane-wave Basis Set[J]. Comput. Mater. Sci., 1996, 6: 15-50.

[32]

Perdew JP, Burke K, Ernzerhof M. Generalized Gradient Approximation Made Simple[J]. Phys. Rev. Lett., 1996, 77: 3865-3868.

[33]

Monkhorst HJ, Pack JD. Special Points for Brillouin-zone Integrations[J]. Phys. Rev. B, 1976, 13: 5188-5192.

[34]

Wu X, Vargas MC, Nayak S, et al. Towards Extending the Applicability of Density Functional Theory to Weakly Bound Systems[J]. J. Chem. Phys., 2001, 115: 8748.

[35]

van de Walle A. Multicomponent Multisublattice Alloys, Nonconfigurational Entropy and Other Additions to the Alloy Theoretic Automated Toolkit[J]. Calphad, 2009, 33: 266-278.

[36]

Parlinski K, Li ZQ, Kawazoe Y. First-Principles Determination of the Soft Mode in Cubic ZrO2[J]. Phys. Rev. Lett., 1997, 78: 4063-4066.

[37]

Li Q, Zhou D, Zheng WT, et al. Global Structural Optimization of Tungsten Borides[J]. Phys. Rev. Lett., 2013, 110: 136403.

[38]

Luo XG, Liu L-M, Hu ZP, et al. Two-Dimensional Superlattice: Modulation of Band Gaps in Graphene-Based Monolayer Carbon Superlattices[J]. J. Phys. Chem. Lett., 2012, 3: 3373-3378.

[39]

Nicolosi V, Chhowalla M, Kanatzidis MG, et al. Liquid Exfoliation of Layered Materials[J]. Science, 2013, 340: 6139.

[40]

Cunningham G, Lotya M, Cucinotta CS, et al. Solvent Exfoliation of Transition Metal Dichalcogenides: Dispersibility of Exfoliated Nanosheets Varies Only Weakly between Compounds[J]. ACS Nano, 2012, 6: 3468-3480.

[41]

Zhuang HL, Hennig RG. Single-Layer Group-III Monochalcogenide Photocatalysts for Water Splitting[J]. Chem. Mater., 2013, 25: 3232-3238.

AI Summary AI Mindmap
PDF

94

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/