Solvothermal synthesis and electrochemical properties of octahedral cobalt oxide decorated with Ag2O

Yang Li , Ping Ren , Wenjian Wu , Changzhao Chen , Mingzai Wu

Journal of Wuhan University of Technology Materials Science Edition ›› 2017, Vol. 32 ›› Issue (3) : 568 -573.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2017, Vol. 32 ›› Issue (3) : 568 -573. DOI: 10.1007/s11595-017-1635-5
Advanced Materials

Solvothermal synthesis and electrochemical properties of octahedral cobalt oxide decorated with Ag2O

Author information +
History +
PDF

Abstract

Octahedral CoO with nanostructures decorated with Ag nanoparticles was prepared via a facile solvothermal approach. After being annealed at 500 °C for 1 h, an electrochemical capacitor material of Co3O4 decorated with Ag2O was obtained. The cyclic voltammetry and galvanostatic charge-discharge were used to evaluate the electrochemical properties of the as-prepared products. The results indicated that the as-prepared samples exhibited fine pseudo-capacitive performance, and the surface modifications of Ag2O can significantly increase the capacitance of the Co3O4 material. The specific capacitance of Ag2O/Co3O4 composite electrode was up to 217.6 F·g−1, which was 3.35 times as high as that of pure Co3O4. Moreover, Ag2O/Co3O4 composite showed an excellent cycle performance, and 65.3% of specific capacitance was maintained after 200 cycles.

Keywords

cobalt oxide / silver oxide / octahedral / electrochemical

Cite this article

Download citation ▾
Yang Li, Ping Ren, Wenjian Wu, Changzhao Chen, Mingzai Wu. Solvothermal synthesis and electrochemical properties of octahedral cobalt oxide decorated with Ag2O. Journal of Wuhan University of Technology Materials Science Edition, 2017, 32(3): 568-573 DOI:10.1007/s11595-017-1635-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Wang X L, He K X, Zhang X G. Preparation and Electrochemical Capacitance of Layered Co3O4[J]. Chinese J. Inorg. Chem., 2006, 22(6): 1019-1022.

[2]

Zeng W W, Huang K L, Yang Y P, et al. Solvothermal Synthesis and Capacitance Per formance of Co3O4 with Different Morphologies[J]. Acta Phys-Chim. Sin., 2008, 24(2): 263-268.

[3]

Wang X L, He X Y, Li F, et al. Electrochemical Capacitance of Co3O4 Prepared by Hydrothermal Method[J]. J. of Yili Normal University, 2011, 12(1): 36

[4]

Zhang D H, Zou W B. Decorating Reduced Graphene Oxide with Co3O4 Hollow Spheres and Their Application in Supercapacitor Materials[J]. Curr. Appl. Phys., 2013, 13: 1796-1800.

[5]

R&D A B. Considerations for the Performance and Application of Electrochemical Capacitors[J]. Electrochim. Acta, 2007, 53: 1083-1091.

[6]

Vijayakumar S, Kiruthika P A, Nagamuthu S, et al. Microwave Assisted Synthesis of Co3O4 Nanoparticles for High-performance Supercapacitors[J]. Electrochim. Acta, 2013, 106: 500-505.

[7]

Gao Y Y, Chen S L, Cao D X, et al. Electrochemical Capacitance of Co3O4 Nanowire Arrays Supported on Nickel Foam[J]. J. Power Sources, 2010, 195: 1757-1760.

[8]

Zhang Y, Feng H, Wu X B, et al. Progress of Electrochemical Capacitor Electrode Materials: A Review[J]. Int. J. Hydrogen Energ., 2009, 34: 4889-4899.

[9]

Xu M W, Bao S J, Li H L. Synthesis and Characterization of Mesoporous Nickel Oxide for Electrochemical Capacitor[J]. J. Solid State Electr., 2007, 11: 372-377.

[10]

Zhang G H, Wang T H, Yu X Z, et al. Nanoforest of Hierarchical Co3O4@NiCo2O4 Nanowire Arrays for High-performance Supercapacitors[J]. Nano Energy, 2013, 2: 586-594.

[11]

Devaraj S, Munichandraiah N. Effect of Crystallographic Structure of MnO2 on Its Electrochemical Capacitance Properties[J]. J. Phys. Chem. C, 2008, 112: 4406-4417.

[12]

Nam H S, Jang K S, Myoun J, et al. Electrochemical Capacitance of Nanoporous Hydrous RuO2 Templated by Anionicsurfactant[J]. Electrochim. Acta, 2011, 56: 6459-6463.

[13]

Li X Y, Shao J, Li J, et al. Ordered Mesoporous MoO2 as a Highperformance Anode Material for Aqueous Supercapacitors[J]. J. Power Sources, 2013, 237: 80-83.

[14]

Yang J, Lan T B, Liu J D, et al. Supercapacitor Electrode of Hollow Spherical V2O5 with a High Pseudocapacitance in Aqueous Solution[J]. Electrochim. Acta, 2013, 105: 89-495.

[15]

Aghazadeh M, Hosseinifard M, Sabour B, et al. Pulse Electrochemical Synthesis of Capsule-like Nanostructures of Co3O4 and Investigation of Their Capacitive Performance[J]. Appl. Sur. Sci., 2013, 287: 187-194.

[16]

Xiang C C, Li M, Zhi M J, et al. A Reduced Graphene Oxide/Co3O4 Composite for Supercapacitor Electrode[J]. J. Power Sources, 2013, 226: 65-70.

[17]

Xu J, Gao L, Cao J Y, et al. Preparation and Electrochemical Capacitance of Cobalt Oxide (Co3O4) Nanotubes as Supercapacitor Material[J]. Electrochim. Acta, 2010, 56: 732-736.

[18]

Yang W L, Gao Z, Ma J, et al. Effects of Solvent on the Morphology of Nanostructured Co3O4 and Its Application for High-performance Supercapacitors[J]. Electrochim. Acta, 2013, 112: 378-385.

[19]

Hye Kwak J, Lee Y W, Bang J H. Supercapacitor Electrode with an Ultrahigh Co3O4 Loading for a High Areal Capacitance[J]. Mater. Lett., 2013, 110: 237-240.

[20]

Liao M X, Liu Y F, Hu Z H, et al. Novel Morphologic Co3O4 of Flower-like Hierarchical Microspheres as Electrode Material for Electrochemical Capacitors[J]. J.Alloys. Compd., 2013, 562: 106-110.

[21]

Deng M J, Huang F L, Sun I W, et al. An Entirely Electrochemical Preparation of a Nano-structured Cobalt Oxide Electrode with Superior Redox Activity[J]. Nanotechnology, 2009, 20: 175602-175606.

[22]

Feng X Y, Shen C, Yu Y, et al. Synthesis and Electrochemical Properties of Sticktight-like and Nanosheet Co3O4 Particles[J]. J. Power Sources, 2013, 230: 59-65.

[23]

Ji G B, Gong Z L, Zhu W X, et al. Simply Synthesis of Co3O4 Nanowire Arrays Using a Solvent-Free Method[J]. J. Alloys Compd., 2009, 476: 579-583.

[24]

Zhang Y Q, Li L, Shi S J, et al. Synthesis of Porous Co3O4 Nanoflake Array and Its Temperature Behavior as Pseudo-capacitor Electrode[J]. J.Power Sources, 2014, 256: 200-205.

[25]

Jiang J H, Shi W D, Song S Y, et al. Solvothermal Synthesis and Electrochemical Performance in Super-capacitors of Co3O4/C Flowerlike Nanostructures[J]. J.Power Sources, 2014, 248: 1281-1289.

[26]

Ahn H J, Seong T Y. Effect of Pt Nanostructures on the Electrochemical Properties of Co3O4 Electrodes for Micro-electrochemical Capacitors [J]. J. Alloys Compd., 2009, 478: L8-L11.

[27]

Quan H M, Park S U, Park J G. Electrochemical Oxidation of Glucose on Silver Nanoparticle-modified Composite Electrodes[J]. Electrochim. Acta, 2010, 55: 2232-2237.

[28]

Meher S K, Ranga Rao G. Effect of Microwave on the Nanowire Morphology, Optical, Magnetic, and Pseudocapacitance Behavior of Co3O4[J]. J. Phys. Chem. C, 2011, 115: 25543-25556.

[29]

Song Z X, Zhang Y J, Liu W, et al. Hydrothermal Synthesis and Electrochemical Performance of Co3O4/Reduced Graphene Oxide Nanosheet Composites for Supercapacitors[J]. Electrochim. Acta, 2013, 112: 120-126.

[30]

Lee J W, Ahn T B, Kim J H J, et al. Nanosheets Based Mesoporous NiO Microspherical Structures Via Facile and Template-free Method for High Performance Supercapacitors[J]. Electrochim. Acta, 2011, 56: 4849-4857.

[31]

Han D D, Chen Y, Zhang M L, et al. Research on the Preparation and Performance of Nano-NiO[J]. Battery Bimonthly, 2006, 36(4): 283-285.

AI Summary AI Mindmap
PDF

100

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/