Fabrication and properties of Ag/Mg0.2Zn0.80/La0.67Ca0.33MnO/p+-Si resistive switching heterostructure devices

Changcheng Wei , Hua Wang , Jiwen Xu , Yupei Zhang , Qisong Chen

Journal of Wuhan University of Technology Materials Science Edition ›› 2017, Vol. 32 ›› Issue (3) : 547 -551.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2017, Vol. 32 ›› Issue (3) : 547 -551. DOI: 10.1007/s11595-017-1631-9
Advanced Materials

Fabrication and properties of Ag/Mg0.2Zn0.80/La0.67Ca0.33MnO/p+-Si resistive switching heterostructure devices

Author information +
History +
PDF

Abstract

Mg0.2Zn0.8O (MZO)/La0.67Ca0.33MnO (LCMO) heterostructure was deposited on p+-Si substrates by sol-gel spin coating technique. The Ag/MZO/LCMO/p+-Si devices exhibit a bipolar, reversible, and remarkable current-voltage characteristic at room temperature. An obvious multilevel resistive switching effect is observed in the devices. The dominant conduction mechanism of the devices is trap-controlled space charge limited current. The resistance ratio of high resistance state and low resistance state of the devices is about six orders of magnitude, and the degradation is invisible in the devices after 250 successive switching cycles. The present results suggest that the Ag/MZO/LCMO/p+-Si devices may be a potential and multilevel candidate for nonvolatile memory application.

Keywords

heterostructure / Ag/MZO/LCMO/p+-Si / sol-gel / resistive switching

Cite this article

Download citation ▾
Changcheng Wei, Hua Wang, Jiwen Xu, Yupei Zhang, Qisong Chen. Fabrication and properties of Ag/Mg0.2Zn0.80/La0.67Ca0.33MnO/p+-Si resistive switching heterostructure devices. Journal of Wuhan University of Technology Materials Science Edition, 2017, 32(3): 547-551 DOI:10.1007/s11595-017-1631-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Chiu F, Li P W, Chang W Y. Reliability Characteristics and Conduction Mechanisms in Resistive Switching Memory Devices Using ZnO Thin Films[J]. Nanoscale Res. Lett., 2012, 7(3): 178

[2]

Choi B J, Jeong D S, Kim S K, et al. Resistive Switching Mechanism of TiO2 Thin Films Grown by Atomic-layer Deposition[J]. J. Appl. Phys., 2005, 98(3): 033715

[3]

Zhang T, Zhang X, Ding L H, et al. Study on Resistance Switching Properties of Na0.5Bi0.5TiO3 Thin Films Using Impedance Spectroscopy[J]. Nanoscale Res. Lett., 2009, 4(11): 1309

[4]

Waser R, Dittmann R, Staikov G, et al. Redox-based Resistive Switching Memories-nanoionic Mechanisms, Prospects, and Challenges[J]. Adv. Mate., 2009, 21: 2632.

[5]

Lai Y S, Tu C H, Kwong D L, et al. Bistable Resistance Switching of Poly (N-vinylcarbazole) Films for Nonvolatile Memory Applications[J]. Appl. Phys. Lett., 2005, 87(12): 122101

[6]

Liu S Q, Wu N J, Ignatiev A. Electric-pulse-induced Reversible Resistance Change Effect in Magnetoresistive Films[J]. Appl. Phys. Lett., 2000, 76: 2749-2751.

[7]

Dong R, Wang Q, Chen L D, et al. Retention Behavior of the Electric-pulse-induced Reversible Resistance Change Effect in Ag- La0.7Ca0.3MnO3-Pt Sandwiches[J]. Appl. Phys. Lett., 2005, 86(17): 172107

[8]

Shang D S, Chen L D, Wang Q, et al. Reversible Multilevel Resistance Switching of Ag-La0.7Ca0.3MnO3-Pt Heterostructures[J]. J. Mater. Res., 2008, 23: 302-307.

[9]

Chen X M, Wu G H, Bao D H, et al. Colossal Resistive Switching Behavior and Its Physical Mechanism of Pt/p-NiO/n-Mg0.6Zn0.4O/Pt Thin Films[J]. Appl. Phys. A, 2008, 93: 093501.

[10]

Lu H B, Yang G Z, Chen Z H, et al. Positive Colossal Magnetoresistance in a Multilayer p-n Heterostructure of Sr-doped LaMnO3 and Nbdoped SrTiO3[J]. Appl. Phys. Lett., 2004, 84: 5007-5009.

[11]

Tanaka H, Zhang J, Kawai T. Giant Electric Field Modulation of Double Exchange Ferromagnetism at Room Temperature in the Perovskite Manganite/Titanate p-n Junction[J]. Phys. Rev. Lett., 2002, 88: 027204.

[12]

Katsu H, Tanaka H, Kawai T J. Dependence of Carrier Doping Level on the Photo Control of (La, Sr)MnO3/SrTiO3 Functional Heterojunction [J]. J. Appl. Phys., 2001, 90: 4578-4582.

[13]

Mridha S, Basak D. The Fabrication of a ZnO Nanowire/La0.65Sr0.35MnO3 Heterojunction and Characterization of its Rectifying Behavior[J]. Nanotechnology, 2009, 20: 075203.

[14]

Jing L H, Wang L F, Zhang W W, et al. The Analysis on Microstructure in Perovskoyes Colossal Magnetoresistance Thin Films on the Si(100) Wafer[J]. Chemical Industry Times, 2007, 21(4): 14

[15]

Shang D S, Wang Q, Chen L D, et al. Effect of Carrier Trapping on the Hysteretic Current-voltage Characteristics in Ag/La0.7Ca0.3MnO3/Pt Heterostructures[J]. Phys. Rev. B, 2006, 73(24): 245427

[16]

Liu Q, Guan W H, Long S B, et al. Resistive Switching Memory Effect of ZrO2 Films with Zr+ Implanted[J]. Appl. Phys. Lett., 2008, 92(1): 012117

[17]

Qi J, Olmedo M, Zheng J G, et al. Multimode Resistive Switching in Single ZnO Nanoisland System[J]. Scientific Reports, 2013, 3: 2405.

[18]

Gao S M, Wang H, Xu J W, et al. Effect of Anealing Temperature on Resistance Switching Behavior of Mg0.2Zn0.8O Thin Films Deposited on ITO Glass[J]. Solid-State Electronics, 2012, 76: 40-43.

[19]

Chen X M, Zhou H, Wu G H, et al. Resistive Switching Behavior of Pt/Mg0.2Zn0.8O/Pt Devices for Nonvolatile Memory Applications[J]. Appl. Phys. A, 2011, 104(1): 477-418.

[20]

Tian H F, Zhao Y G, Jiang X L, et al. Resistance Switching Effect in LaAlO3/Nb-doped SrTiO3 Heterostructure[J]. Appl. Phys. A, 2011, 102(10): 939-942.

AI Summary AI Mindmap
PDF

126

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/