Nanoindentation characteristics of cement paste and interfacial transition zone in mortar with rice husk ash

Zhihai He , Chunxiang Qian , Shigui Du , Man Huang , Menglu Xia

Journal of Wuhan University of Technology Materials Science Edition ›› 2017, Vol. 32 ›› Issue (2) : 417 -421.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2017, Vol. 32 ›› Issue (2) : 417 -421. DOI: 10.1007/s11595-017-1613-y
Cementitious Materials

Nanoindentation characteristics of cement paste and interfacial transition zone in mortar with rice husk ash

Author information +
History +
PDF

Abstract

The nanostructure of cementitious materials has important effects on concrete properties. The effects of rice husk ash (RHA) on cement hydration product phases and interfacial transition zone (ITZ) in mortar were investigated from the nano-scale structure perspective. The experimental results indicate that, with the increase of RHA dosages of samples, the volume fraction of high-density calcium-silicate-hydrate (HD C-S-H) in porosity and hydration product phases increases. The volume fractions of HD C-S-H in C-S-H of samples show an increasing trend with the increase of RHA dosages. RHA decreases the thickness of ITZ and increases the matrix elastic moduli of samples, however, the RHA dosoges hardly affect the thickness and elastic moduli.

Keywords

nanoindentation / rice husk ash / cementitious material / interfacial transition zone / elastic modulus / calcium-silicate-hydrate (C-S-H)

Cite this article

Download citation ▾
Zhihai He, Chunxiang Qian, Shigui Du, Man Huang, Menglu Xia. Nanoindentation characteristics of cement paste and interfacial transition zone in mortar with rice husk ash. Journal of Wuhan University of Technology Materials Science Edition, 2017, 32(2): 417-421 DOI:10.1007/s11595-017-1613-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Zahedi M, Ramezanianpour AA, Ramezanianpour AM. Evaluation of the Mechanical Properties and Durability of Cement Mortars Containing Nanosilica and Rice Husk Ash under Chloride Ion Penetration[J]. Constr. Build. Mater., 2015, 78: 354-361.

[2]

Jamil M, Kaish ABMA, Raman SN, et al. Pozzolanic Contribution of Rice Husk Ash in Cementitious System[J]. Constr. Build. Mater., 2013, 47(5): 588-593.

[3]

Prasittisopin L, Trejo D. Hydration and Phase Formation of Blended Cementitious Systems Incorporating Chemically Transformed Rice Husk Ash [J]. Cem. Concr. Compos., 2015, 31: 100-106.

[4]

Rêgo JHS, Nepomuceno AA, Figueiredo EP, et al. Microstructure of Cement Pastes with Residual Rice Husk Ash of Low Amorphous Silica Content[J]. Constr. Build. Mater., 2015, 80: 56-68.

[5]

Tadjarodi A, Haghverdi M, Mohammadi V. Preparation and Characterization of Nano-porous Silica Aerogel from Rice Husk Ash by Drying at Atmospheric Pressure[J]. Mater. Res. Bull., 2012, 47(9): 2584-2589.

[6]

Antiohos SK, Papadakis VG, Tsimas S. Rice Husk Ash (RHA) Effectiveness in Cement and Concrete as a Function of Reactive Silica and Fineness[J]. Cem. Concr. Res., 2014, s61–62: 20-27.

[7]

Chopra D, Siddique R. Kunal. Strength, Permeability and Microstructure of Self-compacting Concrete Containing Rice Husk Ash[J]. Biosyst. Eng., 2015, 130: 72-80.

[8]

Tuan NV, Ye G, Breugel KV, et al. Hydration and Microstructure of Ultra High Performance Concrete Incorporating Rice Husk Ash[J]. Cem. Concr. Res., 2011, 41(11): 1104-1111.

[9]

Ganesan K, Rajagopal K, Thangavel K. Rice Husk Ash Blended Cement: Assessment of Optimal Level of Replacement for Strength and Permeability Properties of Concrete[J]. Constr. Build. Mater., 2008, 22(8): 1675-1683.

[10]

Gastaldini ALG, Silva MPD, Zamberlan FB, et al. Total Shrinkage, Chloride Penetration, and Compressive Strength of Concretes that Contain Clear-colored Rice Husk Ash[J]. Constr. Build. Mater., 2014, 54(3): 369-377.

[11]

Vandamme M, Ulm FJ, Fonollosa P. Nanogranular Packing of C-S-H at Substochiometric Conditions[J]. Cem. Concr. Res., 2010, 40(1): 14-26.

[12]

Allen AJ, Thomas JJ, Jennings HM. Composition and Density of Nanoscale Calcium-Silicate-Hydrate in Cement[J]. Nat. Mater., 2007, 6(4): 311-316.

[13]

Chen JJ, Sorelli L, Vandamme M, et al. A Coupled Nanoindentation/ SEM-EDS Study on Low Water/Cement Ratio Portland Cement Paste: Evidence for C-S-H/Ca(OH)2 Nanocomposites[J]. J. Am. Ceram. Soc., 2010, 93(5): 1484-1493.

[14]

He ZH, Qian CX, Yi Z, et al. Nanoindentation Characteristics of Cement with Different Mineral Admixtures[J]. Sci. China. Technol. Sci., 2013, 56(5): 1119-1123.

[15]

He ZH, Qian CX, Zhao F. Experimental Investigation of Creep of Cement Paste with Mineral Admixtures via Nanoindentation[J]. Nanosci. Nanotech. Let., 2014, 6(1): 51-56.

[16]

He ZH, Qian CX. Nanoindentation Characteristics of Cement with Metakaolin under Different Curing Systems[J]. Nanosci. Nanotech. Let., 2014, 6(8): 721-725.

[17]

Constantinides G, Ulm FJ. The Nanogranular Nature of C-S-H[J]. J. Mech. Phys. Solids., 2007, 55(1): 64-90.

[18]

Lothenbach B, Scrivener K, Hooton RD. Supplementary Cementitious Materials[J]. Cem. Concr. Res., 2011, 41(3): 217-229.

[19]

Li W, Xiao J, Sun Z, et al. Interfacial Transition Zones in Recycled Aggregate Concrete with Different Mixing Approaches[J]. Constr. Build. Mater., 2012, 35: 1045-1055.

AI Summary AI Mindmap
PDF

110

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/