Mass Production of Bi3NbO7 / Bi2Zn2/3Nb4/3O7 composites and their visible-light photocatalytic activity

Daijiang Peng , Zhengguang Zou , Jinyun He , Fei Long , Shuyi Mo , Huanfu Zhou

Journal of Wuhan University of Technology Materials Science Edition ›› 2017, Vol. 32 ›› Issue (2) : 403 -407.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2017, Vol. 32 ›› Issue (2) : 403 -407. DOI: 10.1007/s11595-017-1610-1
Cementitious Materials

Mass Production of Bi3NbO7 / Bi2Zn2/3Nb4/3O7 composites and their visible-light photocatalytic activity

Author information +
History +
PDF

Abstract

Series Bi3NbO7/Bi2Zn2/3Nb4/3O7 (BN/BZN) composites were synthesized through a facile solid state reaction method. The products were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM) and UV-vis diffuse reflectance spectroscopy(DRS). When BN: BZN=0.1 mole ratio, the BN/BZN composite showed the best visible-light-driven photocatalytic performance, which decomposed nearly 100% of RhB (10 ppm, pH=3-4) within 40 min. The results demonstrated that in-situ solid state synthesis of BN/BZN composites could be an efficient strategy to develop new photocatalyst for environmental remediation.

Keywords

visible-light-driven photocatalyst / Bi3NbO7/Bi2Zn2/3Nb4/3O7 composites / solid state reaction method

Cite this article

Download citation ▾
Daijiang Peng, Zhengguang Zou, Jinyun He, Fei Long, Shuyi Mo, Huanfu Zhou. Mass Production of Bi3NbO7 / Bi2Zn2/3Nb4/3O7 composites and their visible-light photocatalytic activity. Journal of Wuhan University of Technology Materials Science Edition, 2017, 32(2): 403-407 DOI:10.1007/s11595-017-1610-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Asahi R, Morikawa T, Ohwaki T, et al. Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxides[J]. Science, 2001, 293(5528): 269-271.

[2]

Tang YX, Subramaniam VP, Lau TH, et al. In situ Formation of Largescale Ag/AgCl Nanoparticles on Layered Titanate Honeycomb by Gas Phase Reaction for Visible Light Degradation of Phenol Solution[J]. Appl. Catal. B: Environ., 2011, 106(3–4): 577-585.

[3]

Tang YX, Jiang ZL, Deng JY, et al. Synthesis of Nano-Structured Silver/Silver Halides on Titanate Surfaces and Their Visible Light Photocatalytic Performance[J]. ACS Appl. Mater. Interfaces, 2012, 4(1): 438-446.

[4]

Perera SD, Mariano RG, Vu K, et al. Hydrothermal Synthesis of Graphene-TiO2 Nanotube Composites with Enhanced Photocatalytic Activity[J]. ACS Catal., 2012, 2(6): 949-956.

[5]

Kim TH, Rodríguez-González V, Gyawali G, et al. Synthesis of Solar Light Responsive Fe, N Co-doped TiO2 Photocatalyst by Sonochemical Method[J]. Catalysis Today, 2013, 212: 75-80.

[6]

Di LB, Xu ZJ, Wang K, et al. A Facile Method for Preparing Pt/TiO2 Photocatalyst with Enhanced Activity Using Dielectric Barrier Discharge[J]. Catalysis Today, 2013, 211: 109-113.

[7]

Todorova N, Vaimakis T, Petrakis D, et al. N and N, S-doped TiO2 Photocatalysts and Their Activity in NOx Oxidation[J]. Catalysis Today, 2013, 209: 41-46.

[8]

Tian QF, Zhuang JD, Wang JX, et al. Novel Photocatalyst, Bi2Sn2O7, for Photo Oxidation of As(III) Under Visible-light Irradiation[J]. Appl. Catal. A: Gen., 2012, 425–426: 74-78.

[9]

Lucena R, Fresno F, Conesa JC. Spectral Response and Stability of In2S3 as Visible Light-active Photocatalyst[J]. Catal. Commun., 2012, 20: 1-5.

[10]

Wang YJ, He YM, Li TT, et al. Novel CaBi6O10 Photocatalyst for Methylene Blue Degradation Under Visible Light Irradiation[J]. Catal. Commun., 2012, 18: 161-164.

[11]

Chen SF, Ji MS, Yang YG, et al. Preparation and Characterisation of AgIn(WO4)2 Photocatalyst with High Photoreduction Activity[J]. J. Exp. Nanosci., 2012, 7(1): 98-108.

[12]

Huang L, Chu S, Wang JQ, et al. Novel Visible Light Driven Mg-Zn-In Ternary Layered Materials for Photocatalytic Degradation of Methylene Blue[J]. Catalysis Today, 2013, 212: 81-88.

[13]

Ghaffari M, Tan PY, Oruc ME, et al. Effect of Ball Milling on the Characteristics of Nano Structure SrFeO3 Powder for Photocatalytic Degradation of Methylene Blue Under Visible Light Irradiation and Its Reaction Kinetics[J]. Catalysis Today, 2011, 161(1): 70-77.

[14]

Zou ZG, Ye JH, Arakawa H. Substitution Effects of In3+ by Al3+ and Ga3+ on the Photocatalytic and Structural Properties of the Bi2InNbO7 Photocatalyst[J]. Chem. Mater., 2001, 13(5): 1765-1769.

[15]

Zou ZG, Ye JH, Arakawa H. Substitution Effects of In3+ by Fe3+ on Photocatalytic and Structural Properties of Bi2InNbO7 Photocatalysts[J]. J. Mol. Catal. A-Chem., 2001, 168(1–2): 289-297.

[16]

Zou ZG, Arakawa H. Direct Water Splitting into H2 and O2 under Visible Light Irradiation with a New Series of Mixed Oxide Semiconductor Photocatalysts[J]. J. Photochem. Photobiol. A-Chem., 2003, 158(2–3): 145-162.

[17]

Yao WF, Wang H, Xu XH, et al. Photocatalytic Property of Bismuth Titanate Bi2Ti2O7[J]. Appl. Catal. A: Gen., 2004, 259(1): 29-33.

[18]

Abe R, Higashi M, Zou ZG, et al. Photocatalytic Water Splitting into H2 and O2 over R2Ti2O7 (R = Y, rare earth) with Pyrochlore Structure[J]. Chem. Lett., 2004, 33(8): 954-955.

[19]

Garza-Tovar LL, Torres-Martinez LM, Rodriguez DB, et al. Photocatalytic Degradation of Methylene Blue on Bi2MNbO7 (M = Al, Fe, In, Sm) Sol-gel Catalysts[J]. J. Mol. Catal. A-Chem., 2006, 247(1–2): 183-190.

[20]

Luan JF, Hao XP, Zheng SR, et al. Photophysical and Photocatalytic Properties of Bi2MTaO7 (M = La and Y)[J]. J. Mater. Sci., 2006, 41(23): 8001-8012.

[21]

Zeng J, Wang H, Zhang YC, et al. Hydrothermal Synthesis and Photocatalytic Properties of Pyrochlore La2Sn2O7 Nanocubes[J]. J. Phys. Chem. C, 2007, 111(32): 11879-11887.

[22]

Higashi M, Abe R, Sugihara H, et al. Photocatalytic Water Splitting into H2 and O2 over Titanate Pyrochlores Ln2Ti2O7 (Ln = Lanthanoid: Eu-Lu)[J]. B. Chem. Soc. Jpn., 2008, 81(10): 1315-1321.

[23]

Tang XD, Ye HQ, Zhao Z, et al. Photocatalytic Splitting of Water Over a Novel Visible-Light-Response Photocatalyst Nd2InTaO7[J]. Catal. Lett., 2009, 133(3–4): 362-369.

[24]

Wu JJ, Li JT, Lu XJ, et al. A One-pot Method to Grow Pyrochlore H4Nb2O7-Octahedron-Based Photocatalyst[J]. J. Mater. Chem., 2010, 20(10): 1942-1946.

[25]

Sudheendran K, Singh MK, Krishna MG, et al. Microwave and Optical Properties of Monoclinic Bi2Zn2/3Nb4/3O7 Thin Films[J]. Eur. Phys. J-Appl. Phys., 2012, 58(1): 10303

[26]

Thayer RL, Randall C T-, McKinstry S. Medium Permittivity Bismuth Zinc Niobate Thin Film Capacitors[J]. J. Appl. Phys., 2003, 94(3): 1941-1947.

[27]

Wang H, Kamba S, Zhang ML, et al. Microwave and Infrared Dielectric Response of Monoclinic Bismuth Zinc Niobate Based Pyrochlore Ceramics with Ion Substitution in A Site[J]. J. Appl. Phys., 2006, 100(3): 034109

[28]

Xu CX, Wei X, Ren ZH, et al. Solvothermal Preparation of Bi2WO6 Nanocrystals with Improved Visible Lightphotocatalytic Activity[J]. Mater. Lett., 2009, 63: 2194-2197.

[29]

Hou JG, Wang Z, Jiao SQ, et al. 3D Bi12TiO20/TiO2 Hierarchical Heterostructure: Synthesis and Enhanced Visible-light Photocatalytic Activities[J]. J. Hazard. Mater., 2011, 192(3): 1772-1779.

[30]

Shamaila S, Sajjad AKL, Chen F, et al. WO3/BiOCl, A Novel Heterojunction as Visible Light Photocatalyst[J]. J. Colloid Interf. Sci., 2011, 356(2): 465-472.

[31]

Fan HM, Li HY, Liu BK, et al. Photoinduced Charge Transfer Properties and Photocatalytic Activity in Bi2O3/BaTiO3 Composite Photocatalyst[J]. ACS Appl. Mater. Interfaces, 2012, 4(9): 4853-4857.

AI Summary AI Mindmap
PDF

127

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/