Pressure effect on elastic and lattice dynamic properties of beryllium selenide from first principles

Fen Luo , Zhicheng Guo , Lingcang Cai

Journal of Wuhan University of Technology Materials Science Edition ›› 2017, Vol. 32 ›› Issue (2) : 378 -381.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2017, Vol. 32 ›› Issue (2) : 378 -381. DOI: 10.1007/s11595-017-1606-x
Cementitious Materials

Pressure effect on elastic and lattice dynamic properties of beryllium selenide from first principles

Author information +
History +
PDF

Abstract

The lattice dynamic, elastic, and thermodynamic properties of BeSe were investigated with first principles calculations. The phase transition pressure from the zinc blende (B3) to the nickel arsenide (B8) structure of BeSe was determined. The elastic stability analysis suggests that the B3 structure BeSe is mechanically stable in the applied pressure range of 0-50 GPa. Our lattice dynamic calculations show that the B3 structure is lattice dynamically stable under high pressure. Within the quasiharmonic approximation, the thermodynamic properties including the constant volume heat capacity and constant pressure heat capacity are predicted.

Keywords

lattice dynamic / elastic properties / density functional theory

Cite this article

Download citation ▾
Fen Luo, Zhicheng Guo, Lingcang Cai. Pressure effect on elastic and lattice dynamic properties of beryllium selenide from first principles. Journal of Wuhan University of Technology Materials Science Edition, 2017, 32(2): 378-381 DOI:10.1007/s11595-017-1606-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Laref A, Laref S, Belgoumene B, et al. Electronic Structure and Optical Properties of (ZnSe) n/(Si2)m(111) Superlattices[J]. J. Appl. Phys., 2006, 99: 043702-043702.

[2]

Laref S, Laref A. Electric Polarization Field of Phonon Modes Induced by Pressure and Maximally-Localized Wannier Functions in Beryllium Chalcogenides: Theoretical Study[J]. J. Phys. Chem. C, 2011, 115: 12604-12610.

[3]

Laref S, Laref A. Thermal properties of BeX (X = S, Se and Te) Compounds from Ab Initio Quasi-harmonic Method[J]. Comput. Mater. Sci., 2012, 51: 135-140.

[4]

Muñoz A, Rodríguez-Hernández P, Mujica A. Ground-state Properties and High-pressure Phase of Beryllium Chalcogenides BeSe, BeTe, and BeS[J]. Phys. Rev. B, 1996, 54: 11861-11864.

[5]

Srivastava GP, Tütüncü HM, Günhan N. First-principles Studies of Structural, Electronic, and Dynamical Properties of Be Chalcogenides[J]. Phys. Rev. B, 2004, 70: 085206-1.

[6]

Okoye CMI. Structural, Electronic, and Optical Properties of Beryllium Monochalcogenides[J]. Eur. Phys. J. B, 2004, 39: 5-17.

[7]

Berghout A, Zaoui A, Hugel J. Fundamental State Quantities and Highpressure Phase Transition in Beryllium Chalcogenides[J]. J. Phys.: Condens. Matter, 2006, 18: 10365-10375.

[8]

Mameri Z, Zaoui A, Belabbes A, et al. Pressure Effects on the Phonon Modes in Beryllium Chalcogenides[J]. Mater. Chem. Phys., 2010, 123: 343-346.

[9]

Dabhi S, Mankad V, Jha PK. A First Principles study of Phase Stability, Bonding, Electronic and Lattice Dynamical Properties of Beryllium Chalcogenides at High Pressure[J]. J. Alloys Comp., 2014, 617: 905-914.

[10]

Luo H, Ghandehari K, Greene RG, et al. Phase Transformation of BeSe and BeTe to the NiAs Structure at High Pressure[J]. Phys. Rev. B, 1995, 52: 7058-7064.

[11]

Giannozzi P, Baroni S, Bonini N, et al. QUANTUM ESPRESSO: A Modular and Open-source Software Project for Quantum Simulations of Materials[J]. J. Phys.: Condens. Matter, 2009, 21: 395502-395520.

[12]

Hohenberg P, Kohn W. Inhomogeneous Electron Gas[J]. Phys. Rev., 1964, 136: 864-871.

[13]

Perdew JP, Zunger A. Self-interaction Correction to Density-functional Approximations for Many-electron Systems[J]. Phys. Rev. B, 1981, 23: 5048-5079.

[14]

Monkhorst HJ, Park JD. Special Points for Brillouin-zone Integrations[J]. Phys. Rev. B, 1976, 13: 5188-5192.

[15]

Baroni S, de Gironcoli S, Dal Corso A, et al. Phonons and Related Crystal Properties from Density-functional Perturbation Theory[J]. Rev. Mod. Phys., 2001, 73: 515-562.

[16]

Baroni S, Giannozzi P, Testa A. Green’s-function Approach to Linear Response in Solids[J]. Phys. Rev. Lett., 1987, 58: 1861-1864.

[17]

Cohen RE, Sixtrude L, Wasserman E. Tight-binding Computations of Elastic Anisotropy of Fe, Xe, and Si under Compression[J]. Phys. Rev. B, 1997, 56: 8575-8589.

[18]

Gülseren O, Cohen RE. High-pressure Thermoelasticity of Bodycentered-cubic Tantalum[J]. Phys. Rev. B, 2002, 65: 064103-1.

[19]

Liu ZL, Yang JH, Cai LC, et al. Structural and Thermodynamic Properties of Compressed Palladium: Ab Initio and Molecular Dynamics Study[J]. Phys. Rev. B, 2011, 83: 144113-1.

[20]

Birch F. Equation of State and Thermodynamic Parameters of NaCl to 300 kbar in the High-Temperature Domain[J]. J. Geophys. Res., 1986, 91: 4949-4954.

[21]

Sinko GV, Smirnov NA. Ab Initio Calculations of Elastic Constants and Thermodynamic Properties of bcc, fcc, and hcp Al Crystals under Pressure[J]. J. Phys.: Condens. Matter, 2002, 14: 6989-7005.

[22]

Hill R. The Elastic Behaviour of a Crystalline Aggregate[J]. Proc. Phys. Soc. London A, 1952, 65: 349-354.

[23]

Luo F, Cai LC, Chen XR, et al. Ab Initio Calculation of Lattice Dynamics and Thermodynamic Properties of Beryllium[J]. J. Appl. Phys., 2012, 111: 053503-1.

[24]

Guo ZC, Luo F, Chen Y. Phase Transition and Thermodynamic Properties of Beryllium from First-principles Calculations[J]. Comput. Mater. Sci., 2014, 84: 139-144.

[25]

Luo F, Guo ZC, Zhang XL, et al. Pressure Effects on Structural and Elastic Properties of BeO from First-principles Calculations[J]. Phys. Status Solid B, 2015, 1: 212-218.

AI Summary AI Mindmap
PDF

99

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/