Enhancement of the hydrogen storage properties of Mg/C nanocomposites prepared by reactive milling with molybdenum

Zongying Han , Shixue Zhou , Haipeng Chen , Haili Niu , Naifei Wang

Journal of Wuhan University of Technology Materials Science Edition ›› 2017, Vol. 32 ›› Issue (2) : 299 -304.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2017, Vol. 32 ›› Issue (2) : 299 -304. DOI: 10.1007/s11595-017-1596-8
Advanced Materials

Enhancement of the hydrogen storage properties of Mg/C nanocomposites prepared by reactive milling with molybdenum

Author information +
History +
PDF

Abstract

The effect of Mo on the morphology, crystal structure and hydrogen sorption properties of Mg/C composites prepared by reactive milling was studied. Transmission electron microscopic (TEM) observation shows that Mg/C composites prepared with the addition of Mo are of nanoscale with particle size about 20-120 nm after 3 h of milling under 1 MPa H2. MgH2 of tetrahedral crystal structure predominates in the materials with the geometric shape of oblique hexagonal prism. From X-ray diffraction (XRD) and hydrogen content studies, Mo and crystallitic carbon have a synergistic effect on promoting the hydrogenation rate in the reactive milling process. From differential scanning calorimetric (DSC) studies, the dehydrogenation peak temperature of the Mg/C materials with Mo is lowered to 299-340 °C.

Keywords

magnesium hydride / reactive milling / hydrogenation rate / dehydrogenation temperature

Cite this article

Download citation ▾
Zongying Han, Shixue Zhou, Haipeng Chen, Haili Niu, Naifei Wang. Enhancement of the hydrogen storage properties of Mg/C nanocomposites prepared by reactive milling with molybdenum. Journal of Wuhan University of Technology Materials Science Edition, 2017, 32(2): 299-304 DOI:10.1007/s11595-017-1596-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Jain IP, Lal C, Jain A. Hydrogen Storage in Mg: A Most Promising Material[J]. Int. J. Hydrogen Energy, 2010, 35: 5133-5144.

[2]

Aguey Zinsou KF, Ares Fernández JR. Hydrogen in Magnesium: New Perspectives toward Functional Stores[J]. Energ. Environ. Sci., 2010, 3: 526-543.

[3]

Bogdanovic B, Bohmhammel K, Christ B, et al. Thermodynamic Investigation of the Magnesium-Hydrogen System[J]. J. Alloys Compd., 1999, 282: 84-92.

[4]

Huot J, Liang G, Boily S, et al. Structural Study and Hydrogen Sorption Kinetics of Ball-Milled Magnesium Hydride[J]. J. Alloys Compd., 1999, 293: 495-500.

[5]

Satyapal S, Petrovic J, Read C, et al. The US Department of Energy's National Hydrogen Storage Project: Progress towards Meeting Hydrogen-Powered Vehicle Requirements[J]. Catal. Today, 2007, 120: 246-256.

[6]

Yang J, Sudik A, Wolverton C, et al. High Capacity Hydrogen Storage Materials: Attributes for Automotive Applications and Techniques for Materials Discovery[J]. Chem. Soc. Rev., 2010, 39: 656-675.

[7]

Fuster V, Castro FJ, Troiani H, et al. Characterization of Graphite Catalytic Effect in Reactively Ball-Milled MgH2-C and Mg-C Composites[J]. Int. J. Hydrogen Energy, 2011, 36: 9051-9061.

[8]

Zhou SX, Chen HP, Ding C, et al. Effectiveness of Crystallitic Carbon from Coal as Milling Aid and for Hydrogen Storage during Milling with Magnesium[J]. Fuel, 2013, 109: 68-75.

[9]

Lototskyy M, Sibanyoni JM, Denys RV, et al. Magnesium-Carbon Hydrogen Storage Hybrid Materials Produced by Reactive Ball Milling in Hydrogen[J]. Carbon, 2013, 57: 146-160.

[10]

Song MY, Bobet JL, Darriet B. Improvement in Hydrogen Sorption Properties of Mg by Reactive Mechanical Grinding with Cr2O3, Al2O3 and CeO2[J]. J. Alloys Compd., 2002, 340: 256-262.

[11]

Pan YB, Wu YF, Qian L. Modeling and Analyzing the Hydriding Kinetics of Mg-LaNi5 Composites by Chou Model[J]. Int. J. Hydrogen Energy, 2011, 36: 12892-12901.

[12]

Han ZY, Zhou SX, Wang NF, et al. Crystal Structure and Hydrogen Storage Behaviors of Mg/MoS2 Composites from Ball Milling[J]. J. Wuhan Univ. Technol.-Mater. Sci. Ed., 2016, 31(4): 773-778.

[13]

Liang G, Huot J, Boily S, et al. Catalytic Effect of Transition Metals on Hydrogen Sorption in Nanocrystalline Ball Milled MgH2-Tm (T m=Ti, V, Mn, Fe and Ni)[J]. J. Alloys Compd., 1999, 292: 247-252.

[14]

Shang C, Bououdina M, Song Y, et al. Mechanical Alloying and Electronic Simulations of (MgH2+M) Systems (M= Al, Ti, Fe, Ni, Cu and Nb) for Hydrogen Storage[J]. Int. J. Hydrogen Energy, 2004, 29: 73-80.

[15]

Gutfleisch O, Dal Toè S, Herrich M, et al. Hydrogen Sorption Properties of Mg-1wt%Ni-0.2wt%Pd Prepared by Reactive Milling[J]. J. Alloys Compd., 2005, 404: 413-416.

[16]

Bystrzycki J, Czujko T, Varin RA. Processing by Controlled Mechanical Milling of Nanocomposite Powders Mg+X (X= Co, Cr, Mo, V, Y, Zr) and their Hydrogenation Properties[J]. J. Alloys Compd., 2005, 404–406: 507-510.

[17]

Hanada N, Ichikawa T, Fujii H. Catalytic Effect of Nanoparticle 3d-Transition Metals on Hydrogen Storage Properties in Magnesium Hydride MgH2 Prepared by Mechanical Milling[J]. J. Phys. Chem. B, 2005, 109: 7188-7194.

[18]

Kwon S, Baek S, Mumm DR, et al. Enhancement of the Hydrogen Storage Characteristics of Mg by Reactive Mechanical Grinding with Ni, Fe and Ti[J]. Int. J. Hydrogen Energy, 2008, 33: 4586-4592.

[19]

Pozzo M, Alfe D. Hydrogen Dissociation and Diffusion on Transition Metal (= Ti, Zr, V, Fe, Ru, Co, Rh, Ni, Pd, Cu, Ag)-doped Mg (0001) Surfaces[J]. Int. J. Hydrogen Energy, 2009, 34: 1922-1930.

[20]

Young K, Ouchi T, Huang B, et al. Effect of Molybdenum Content on Structural, Gaseous Storage, and Electrochemical Properties of C14-Predominant AB2 Metal Hydride Alloys[J]. J. Power Sources, 2011, 196: 8815-8821.

[21]

Zhang XB, Sun DZ, Yin WY, et al. Crystallographic and Electrochemical Characteristics of La0.7Mg0.3Ni3.5-x(Al0.5Mo0.5)x (x= 0–0.8) Hydrogen Storage Alloys[J]. J. Power Sources, 2006, 154: 290-297.

[22]

Shi SQ, Li CR, Tang WH. Crystallographic and Electrochemical Performances of La-Mg-Ni-Al-Mo-based Alloys as Anode Materials for Nickel-Metal Hydride Batteries[J]. J. Alloys Compd., 2009, 476: 874-877.

[23]

Notten P, Hokkeling P. Double-Phase Hydride forming Compounds: A New Class of Highly Electrocatalytic Materials[J]. J. Electrochem. Soc., 1991, 138: 1877-1885.

[24]

Yeh M, Beibutian V, Hsu S. Effect of Mo Additive on Hydrogen Absorption of Rare-Earth Based Hydrogen Storage Alloy[J]. J. Alloys Compd., 1999, 293: 721-723.

[25]

Senoh H, Hara Y, Inoue H, et al. Charge Efficiency of Misch Metal-Based Hydrogen Storage Alloy Electrodes at Relatively Low Temperatures[J]. Electrochim. Acta, 2001, 46: 967-971.

[26]

Ye H, Zhang H. Development of Hydrogen-Storage Alloys for High-Power Nickel-Metal Hydride Batteries[J]. Adv. Eng. Mater., 2001, 3: 481-485.

[27]

Young K, Ouchi T, Reichman B, et al. Effects of Mo Additive on the Structure and Electrochemical Properties of Low-Temperature AB5 Metal Hydride Alloys[J]. J. Alloys Compd., 2011, 509: 3995-4001.

[28]

Iwase K, Nakamura Y, Mori K, et al. Hydrogen Absorption-Desorption Properties and Crystal Structure Analysis of Ti-Cr-Mo alloys[J]. J. Alloys Compd., 2005, 404: 99-102.

[29]

Chen J, Dou S, Liu H. Hydrogen Desorption and Electrode Properties of Zr0.8Ti0.2(V0.3Ni0.6M0.1)2 Alloys[J]. J. Alloys Compd., 1997, 256: 40-44.

[30]

Asano K, Hayashi S, Nakamura Y, et al. Effect of Substitutional Mo on Diffusion and Site Occupation of Hydrogen in the BCT Monohydride Phase of V-H System Studied by 1H NMR[J]. J. Alloys Compd., 2010, 507: 399-404.

[31]

Au M, Pourarian F, Sankar S, et al. TiMn2-Based Alloys as High Hydrogen Storage Materials[J]. Mat. Sci. Eng. B, 1995, 33: 53-57.

[32]

Huang TZ, Wu Z, Xia BJ, et al. Influence of Stoichiometry and Alloying Elements on the Crystallography and Hydrogen Sorption Properties of TiCr Based Alloys[J]. Mat. Sci. Eng. A, 2005, 397: 284-287.

[33]

Jeong C, Chung W, Iwakura C, et al. Effect of Temperature on the Discharge Capacity of the Laves Phase Alloy Used in Nickel/Metal-Hydride Batteries[J]. J. Power Sources, 1999, 79: 19-24.

[34]

Zhang XZ, Yang R, Yang JZ, et al. Synthesis of Magnesium Nanoparticles with Superior Hydrogen Storage Properties by Acetylene Plasma Metal Reaction[J]. Int. J. Hydrogen Energy, 2011, 36: 4967-4975.

[35]

Lillo Ródenas MA, Guo ZX, Aguey Zinsou KF, et al. Effects of Different Carbon Materials on MgH2 Decomposition[J]. Carbon, 2008, 46: 126-137.

[36]

Zhou SX, Chen HP, Ran WX, et al. Effect of Carbon from anthracite Coal on Decomposition Kinetics of Magnesium Hydride[J]. J. Alloys Compd., 2014, 592: 231-237.

[37]

Jia YH, Han SM, Zhang W, et al. Hydrogen Absorption and Desorption Kinetics of MgH2 Catalyzed by MoS2 and MoO2[J]. Int. J. Hydrogen Energy, 2013, 38: 2352-2356.

[38]

Karty A G, Genossar J, Rudman P. Hydriding and Dehydriding Kinetics of Mg in a Mg/Mg2Cu Eutectic Alloy: Pressure Sweep Method[J]. J. Appl. Phys., 1979, 50: 7200-7209.

AI Summary AI Mindmap
PDF

121

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/