Fast mineralization of densely packed hydroxyapatite layers in the presence of overexpressed recombinant amelogenin

Menghu Wang , Hao Xie , Jingjing Xie , Hang Ping , Tiening Tan , Wei Ji , Zhengyi Fu

Journal of Wuhan University of Technology Materials Science Edition ›› 2017, Vol. 32 ›› Issue (2) : 256 -263.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2017, Vol. 32 ›› Issue (2) : 256 -263. DOI: 10.1007/s11595-017-1589-7
Advanced Materials

Fast mineralization of densely packed hydroxyapatite layers in the presence of overexpressed recombinant amelogenin

Author information +
History +
PDF

Abstract

Learning from the process of biominerals formation provides tremendous ideas for developing advanced synthesis techniques. According to the structure formation of tooth enamel, a recombinant amelogenin his-AmelX was designed and constructed. The protein was over-expressed and could be conveniently purified in one-step heat treatment. The mineralization process of hydroxyapatite was initiated by enzyme AP and regulated by the recombinant amelogenin. Effects of solution pH value and mineralization duration were studied. It was demonstrated that his-AmelX could induce the nucleation of apatite and quicken the growth rate at pH 7.0-7.4, while impeded hydroxyapatite growth at pH 6.8. Moreover, a much denser layer of hydroxyapatite was achieved with the addition of his-AmelX. The present study may not only provide insight into the formation of natural biomaterials but also open a new path to prepare materials under environmentally benign conditions.

Keywords

biomineralization / recombinant amelogenin / hydroxyapatite / bioprocess inspired synthesis

Cite this article

Download citation ▾
Menghu Wang, Hao Xie, Jingjing Xie, Hang Ping, Tiening Tan, Wei Ji, Zhengyi Fu. Fast mineralization of densely packed hydroxyapatite layers in the presence of overexpressed recombinant amelogenin. Journal of Wuhan University of Technology Materials Science Edition, 2017, 32(2): 256-263 DOI:10.1007/s11595-017-1589-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Clegg WJ, Kendall K, Alford NM, et al. A Simple Way to Make Tough Ceramics[J]. Nature, 1990, 347: 455-457.

[2]

Liu K, Du J, Wu J, et al. Superhydrophobic Gecko Feet with High Adhesive Forces Towards Water and Their Bio-inspired Materials[J]. Nanoscale, 2012, 4(3): 768-772.

[3]

Zheng Y, Bai H, Huang Z, et al. Directional Water Collection on Wetted Spider Silk[J]. Nat. Let., 2010, 463: 640-643.

[4]

Bouville F, Maire E, Meille S, et al. Strong, Tough and Stiff Bioinspired Ceramics from Brittle Constituents[J]. Nat. Mater., 2014, 13: 508-514.

[5]

Munch E, Launey ME, Alsem DH, et al. Tough, Bio-inspired Hybrid Materials[J]. Science, 2008, 322(5907): 1516-1520.

[6]

Meyers MA, McKittrick J, Chen PY. Structural Biological Materials: Critical Mechanics-materials Connections[J]. Science, 2013, 339(6121): 773-779.

[7]

Feng L, Li S, Li Y, et al. Super-hydrophobic Surfaces: From Natural to Artificial[J]. Adv. Mater., 2002, 14(24): 1857-1860.

[8]

Chu Z, Seeger S. Superamphiphobic Surfaces[J]. Chem. Sov. Rev., 2014, 43(8): 2784-2798.

[9]

Liu M, Zheng Y, Zhai J, et al. Bioinspired Super-antiwetting Interfaces with Special Liquid-solid Adhension[J]. Accounts of Chemical Research, 43 (3): 368–377

[10]

Mann S, Archibald DD, Didymus JM, et al. Crystallization at Inorganicorganic Interfaces: Biominerals and Biomimetic Synthesis [J]. Science, 1993, 261(5126): 1286-1292.

[11]

Sanchez C, Arribart H, Guille MMG. Biomimetism and Bioinspiration as Tools for the Design of Innovative Materials and Systems[J]. Nat. Mater., 2005, 4: 277-288.

[12]

Xie JJ, Xie H, Su BL, et al. Mussel-directed Synthesis of Nitrogen-Doped Anatase TiO2[J]. Angew. Chem., 2016, 128: 3083-3087.

[13]

Ping H, Xie H, Su BL, et al. Organized Intrafibrillar Mineralization, Directed by a Rationally Designed Multi-functional Protein[J]. J. Mater. Chem. B, 2015, 3: 4496-4502.

[14]

Wang XL, Xie H, Su BL, et al. Bio-process Inspired Synthesis of Vaterite (CaCO3), Directed by a Rationally Designed Multifunctional Protein, ChiCaSifi [J]. J. Mater. Chem. B, 2015, 3: 5951-5956.

[15]

Zeng H, Xie JJ, Xie H, et al. Bio-process Inspired Synthesis of Hierarchically Porous Nitrogen-doped TiO2 with High Visible-light Photocatalytic Activity[J]. J. Mater. Chem. A, 2015, 3: 19588-19596.

[16]

Mann S. Biomineralization, 2001 Oxford: Oxford Univ. Press.

[17]

Hoang QQ, Sicheri F, Howard AJ, et al. Bone Recognition Mechanism of Porcine Osteocalcin from Crystal Structure[J]. Nature, 425: 977–980

[18]

Du C, Falini G, Fermani S, et al. Supermolecular Assembly of Amelogenin Nanospheres into Birefringent Microribbons[J]. Science, 2005, 307(5714): 1450-1454.

[19]

Moradian-Oldak J. Protein-mediated Enamel Mineralization[J]. Front Biosci., 17: 1996–2023

[20]

Cuy JL, Mann AB, Livi KJ, et al. Nanoindentation Mapping of the Mechanical Properties of Human Molar Tooth Enamel[J]. Arch. Oral Biol., 2002, 47(4): 281-291.

[21]

Ge J, Cui FZ, Wang XM, et al. Property Variations in the Prism and the Organic Sheath within Enamel by Nanoindentation[J]. Biomaterials, 2005, 26(16): 3333-3339.

[22]

Popowics TE, Rensberger JM, Herring SW. Enamel Microstructure and Microstrain in the Fracture of Human and Pig Molar Cusps[J]. Arch. Oral Biol., 2004, 49: 595-605.

[23]

Bonar LC, Glimcher MJ, Mechanic GL. The Molecular Structure of the Neutral-soluble Proteins of Embryonic Bovine Enamel in the Solid State[J]. J. Ultrastruct. Res., 1965, 13(3): 308-317.

[24]

Renugopalakrishnan V, Strawich ES, Horowitz PM, et al. Studies of the Secondary Structures of Amelogenin from Bovine Tooth Enamel[J]. Biochemistry, 1986, 25: 4879-4887.

[25]

Goto Y, Kogure E, Takagi T, et al. Molecular Conformation of Porcine Amelogenin in Solution: Three Folding Units at the N-terminal, Central and C-termianal Regions[J]. J. Biochem., 1993, 113(113): 55-60.

[26]

Renugopalakrishnan V, Pattabiraman N, Prabhakaran M, et al. Tooth Enamel Protein, Amelogenin, Has a Probable Beta-spiral Internal Channel, Gln112-Leu138, within a Single Polypeptide Chain: Preliminary Molecular Mechanics and Dynamics Studies[J]. Biopolymers, 1989, 28(1): 297-303.

[27]

Zhang X, Ramirez BE, Liao X, et al. Amelogenin Supramolecular Assembly in Nanospheres Defined by a Complex Helix-coil-PP? Helix 3D-structure[J]. PLoS ONE, 2011, 6(10): e24952

[28]

Wiedemann-Bidlack FB, Beniash E, Yamakoshi Y, et al. pH Triggered Self-assembly of Native and Recombinant Amelogenins under Physiological pH and Temperature in Vitro[J]. J. Struct. Biol., 2007, 160: 57-69.

[29]

Fang P, Conway JF, Margolis HC, et al. Hierarchical Self-assembly of Amelogenin and the Regulation of Biomineralization at the Nanoscale[J]. PNAS, 2011, 108(34): 14097-14102.

[30]

Fan Y, Sun Z, Moradian-Oldak J. Effect of Fluoride on the Morphology of Calcium Phosphate Crystals Grown on Acid Etched Human Enamel [J]. Caries Res., 2009, 43: 132-136.

[31]

Wen HB, Moradian-Oldak J, Fincham AG. Modulation of Apatite Crystal Growth on Bioglass by Recombinant Amelogenin[J]. Biomaterials, 1999, 20: 1717-1725.

[32]

Iijima M, Moradian-Oldak J. Control of Apatite Crystal Growth in a Fluoride Containing Amelogenin-rich Matri [J]. Biomaterials, 2005, 26: 1595-1603.

[33]

Fan Y, Sun Z, Wang R, et al. Enamel Inspired Nanocomposite Fabrication Through Amelogenin Supramolecular Assembly[J]. Biomaterials, 2007, 28: 3034-3042.

[34]

Fan Y, Nelson JR, Alvarez JR, et al. Amelogenin-assisted ex Vivo Remineralization of Human Enamel: Effects of Supersaturation Degree and Fluride Concentration[J]. Acta Biomaterialia, 2011, 7: 2293-2302.

[35]

Uskokovic V, Li W, Habelitz S. Amelogenin as a Promoter of Nucleation and Crystal Growth of Apatite[J]. Journal of Crystal Growth, 2011, 316: 106-117.

[36]

Fan Y, Sun Z, Moradian-Oldak J. Controlled Remineralization of Enamel in the Presence of Amelogenin and Fluoride[J]. Biomaterials, 2009, 30: 478-483.

[37]

Ruan Q, Zhang Y, Yang X, et al. An Amelogenin-chitosan Matrix Promotes Assembly of an Enamel-like Layer with a Dense Interface[J]. Acta Biomaterialia, 2013, 9: 7289-7297.

[38]

Mukherjee K, Ruan Q, Liberman D. Repairing Human Tooth Enamel with Leucin-rich Amelogenin Peptide-chitosan Hydrogel[J]. J. Mater. Res., 2016, 31: 556-563.

[39]

Taylor AL, Haze-Filderman A, Blumenfeld A, et al. High Yield of Biologically Active Recombinant Human Amelogenin Using the Baculovirus Expression System[J]. Protein Expression and Purification, 2006, 45: 43-53.

[40]

Svensson J, Andersson C, Reseland JE, et al. Histidine Tag Fusion Increases Expression Levels of Active Recombinant Amelogenin in Escherichia Coli[J]. Protein Expression and Purification, 2006, 48: 134-141.

[41]

Bonde JS, Bulow L. One-step Purification of Recombinant Human Amelogenin and Use of Amelogenin as a Fusion Partner[J]. PLoS ONE, 2012, 7(3): e33269

[42]

Tanahashi M, Matsuda T. Surface Functional Group Dependence on Apatite Formation on Self-assembled Monolayers in a Simulated Body Fluid[J]. J. Biomed. Mater. Res., 1997, 34(3): 305-315.

[43]

Kannan S, Ferreira JMF. Synthesis and Thermal Stability of Hydroxyapatite-ß-tricalcium Phosphate Composites with Cosubstituted Sodium, Magnesium, and Fluorine[J]. Chem. Mater., 2006, 18: 198-203.

[44]

Tarasevich BJ, Lea S, Bernt W, et al. Adsorption of Amelogenin onto Self-assembled and Fluoroapatite Surfaces[J]. J. Phys. Chem. B, 2009, 113: 1833-1842.

AI Summary AI Mindmap
PDF

188

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/