Structural and electrochemical performances of α-MnO2 doped with tin for supercapacitors

Yang Li , Jing Li , Huaqing Xie , Fan Yang , Yuhong Zhou

Journal of Wuhan University of Technology Materials Science Edition ›› 2017, Vol. 32 ›› Issue (2) : 237 -244.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2017, Vol. 32 ›› Issue (2) : 237 -244. DOI: 10.1007/s11595-017-1586-x
Advanced Materials

Structural and electrochemical performances of α-MnO2 doped with tin for supercapacitors

Author information +
History +
PDF

Abstract

To improve the electrochemical performances of α-MnO2 as electrode materials for supercapacitors, Sn-doped α-MnO2 in the presence of the doping amount of 1%-4% was successfully synthesized by hydrothermal method. As-prepared α-MnO2 presents nanorod shape and no other impurities exist. By ultraviolet-visible absorption spectroscopy, it is convinced that the band gaps of α-MnO2 decrease with increasing Sn-doping amount. Cyclic voltammetry investigation indicates that undoped and doped α-MnO2 all have regular capacitive response. As the scan rate enlarged, the profiles of curves gradually deviate from rectangle. Compared with undoped α-MnO2, doped α-MnO2 has larger specific capacitance. The specific capacitance of 3% doped α-MnO2 reaches 241.0 F/g while undoped α-MnO2 only has 173.0 F/g under 50 mA/ g current density in galvanostatical charge-discharge measurement. Enhanced conductivity by Sn-doping is considered to account for doped sample’s enhanced electrochemical specific capacitance.

Keywords

doping / capacitors / electrochemical characterizations / electronic conductivities

Cite this article

Download citation ▾
Yang Li, Jing Li, Huaqing Xie, Fan Yang, Yuhong Zhou. Structural and electrochemical performances of α-MnO2 doped with tin for supercapacitors. Journal of Wuhan University of Technology Materials Science Edition, 2017, 32(2): 237-244 DOI:10.1007/s11595-017-1586-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Pognon G, Cougnon C, Mayilukila D, et al. Catechol-modified Activated Carbon Prepared by the Diazonium Chemistry for Application as Active Electrode Material in Electrochemical Capacitor[J]. Acs. Appl. Mater. & Inter., 2012, 4: 3788-3796.

[2]

Luo JY, Xia YY. The Effect of Oxygen Vacancies on the Structure and Electrochemistry of LiTi2 (PO4)3 for Lithium-ion Batteries: A Aombined Experimental and Theoretical Study[J]. J.Power Sources, 2009, 186: 224-227.

[3]

Ma C, Song Y, Shi J, et al. Preparation and One-step Activation of Microporous Carbon Nanofibers for Use as Supercapacitor Electrodes[J]. Carbon, 2013, 51: 290-300.

[4]

Razaq A, Nyholm L, Sjodin M. Paper-Based Energy-Storage Devices Comprising Carbon Fiber-Reinforced Polypyrrole-Cladophora Nanocellulose Composite Electrodes[J]. Adv.Energy Mater., 2012, 2: 445-454.

[5]

Li X, Zhitomirsky I. Electrodeposition of Polypyrrole-carbon Nanotube Composites for Electrochemical Supercapacitors[J]. J.Power Sources, 2013, 221: 49-56.

[6]

Wang X, Han X, Lim M, et al. Nickel Cobalt Oxide-single Wall Carbon Nanotube Composite Material for Superior Cycling Stability and High-performance Supercapacitor Application[J]. Phys. Chem. C, 2012, 116: 12448-12454.

[7]

Jin Y, Jia M, Zhang M, et al. Preparation of Stable Aqueous Dispersion of Graphene Nanosheets and Their Electrochemical Capacitive Properties[J]. Appl. Surf. Sci., 2013, 264: 787-793.

[8]

Zhou Z, Wu XF. Graphene-beaded Carbon Nanofibers for Use in Supercapacitor Electrodes: Synthesis and Electrochemical Characterization[J]. J.Power Sources, 2013, 222: 410-416.

[9]

Yan MY, Wang FC, Han CH, et al. Nanowire Templated Semihollow Bicontinuous Graphene Scrolls: Designed Construction, Mechanism, and Enhanced Energy Storage Performance[J]. J. Am. Chem. Soc., 2013, 135(48): 18176-18182.

[10]

Xia H, Meng YS, Yuan G, Cui C, Luc L. A Symmetric RuO2/RuO2 Supercapacitor Operating at 1.6 V by Using a Neutral Aqueous Electrolyte[J]. Electrochem. Solid ST., 2012, 15: A60-63.

[11]

Patil UM, Kulkarni SB, Jamadade VS, et al. Chemically Synthesized Hydrous RuO2 Thin Films for Supercapacitor Application[J]. J.Alloy Compd., 2011, 509: 1677-1682.

[12]

He L, Li ZC, Zhang ZJ. Rapid, Low-temperature Synthesis of Single-crystalline Co3O4 Nanorods on Silicon Substrates on a Large Scale[J]. Nanotechnology, 2008, 19: 155606.

[13]

Yousefi T, Golikand AN, Mashhadizadeh MH, et al. High Temperature and Low Current Density Synthesis of Mn3O4 Porous Nano Spheres: Characterization and Electrochemical Properties[J]. Curr. Appl. Phys., 2012, 12: 193-198.

[14]

Zang J, Li X. Strongly Green-photoluminescent Graphene Quantum Dots for Bioimaging Bpplications[J]. J. Mater. Chem., 2011, 21: 10965-10969.

[15]

Soundararajan D, Kim YI, Kim J-H, et al. Hydrothermal Synthesis and Electrochemical Characteristics of Crystalline α-MnO2 Nanotubes[J]. Sci. Adv. Mater., 2012, 4: 805-812.

[16]

Perret PG, Malenfant PRL, Bock C, et al. Electro-deposition and Dissolution of MnO2 on a Graphene Composite Electrode for Its Utilization in an Aqueous Based Hybrid Supercapacitor[J]. J.Electrochem Soc., 2012, 159: A1554-1561.

[17]

Zhao J, Lu Z, Shao M, et al. Hierarchical Layered Double Hydroxide Microspheres with Largely Enhanced Performance for Ethanol Electrooxidation[J]. Rsc. Adv., 2013, 3: 1045-1049.

[18]

Zhi M, Manivannan A, Meng F, et al. Highly Conductive Electrospun Carbon Nanofiber/MnO2 Coaxial Nano-cables for High Energy and Power Density Supercapacitors[J]. J.Power Sources, 2012, 208: 345-353.

[19]

Wang G, Shao G, Du J, et al. Electrochemical Performance of Modoped LiFePO4/C Composites Prepared by Two-step Solid-state Reaction[J]. Mater Chem. Physics., 2013, 138: 108-113.

[20]

Hashem AM, Abuzeid HM, Mikhailova D, et al. Structural and Electrochemical Properties of a-MnO2 Doped with Cobalt[J]. Mater Sci., 2012, 47: 2479-2485.

[21]

Dubal DP, Lokhande CD. Significant Improvement in the Electrochemical Performances of Nano-nest Like Amorphous MnO2 Electrodes Due to Fe Doping[J]. Ceram. Int., 2013, 39: 415-423.

[22]

Ryu WH, Han DW, Kim WK, et al. Control Synthesis and Lithium ion Battery Performance of Manganese Dioxide Nanowires with Tunable Structures but Similar Morphology[J]. Nanopart Res., 2011, 13: 4777-4784.

[23]

Hashem AM, Abuzeid HM, Narayanan N, et al. Synthesis, Structure, Magnetic, Electrical and Electrochemical Properties of Al, Cu and Mg doped MnO2[J]. Mater Chem. Phys., 2011, 130: 33-38.

[24]

Wang S, Liu Q, Yu J, et al. Anisotropic Expansion and High Rate Discharge Performance of V-doped MnO2 for Li/MnO2 Primary Battery[J]. Int J Electrochem Sci., 2012, 7: 1242-1250.

[25]

Kunkalekar RK, Salker AV. Activity of Pd Doped and Supported Mn2O3 Nanomaterials for CO Oxidation[J]. React. Kinet. Mech. Cat., 2012, 106: 395-405.

[26]

Hashem AM, Abdel-Latif AM, Abuzeid HM, et al. Improvement of the Tlectrochemical Performance of Nanosized a-MnO2 Used as Cathode Material for Li-batteries by Sn-doping[J]. J.Alloy Compd., 2011, 509: 9669-9674.

[27]

Malankar H, Umare SS, Singh K. Room Temperature Synthesis of Lidoped MnO2 and Its Electrochemical Activity[J]. J.Mater Lett., 2009, 63: 2016-2018.

[28]

Norihito I K, Kenichi O, Fujio I, et al. Crystal Structure of an Open-tunnel Oxide a-MnO2 Analyzed by Rietveld Refinements and MEM-based Pattern Fitting[J]. Solid State Chem., 2004, 177: 1258-1267.

[29]

Xun WLYD. Rare-earth-compound Nanowires, Nanotubes, and Fullerene-like Nanoparticles: Synthesis, Characterization, and Properties[J]. Chem-Eur. J., 2003, 9: 300-306.

[30]

Han YF, Zhong ZY, Ramesh K, et al. Controlled Synthesis, Characterization, and Catalytic Properties of Mn2O3 and Mn3O4 Nanoparticles Supported on Mesoporous Silica SBA-15[J]. Phys. Chem. B, 2006, 110: 24450-24456.

[31]

Duan YD, Zhang QZ, Fang YY, et al. Influence of Sn Source on the Performance of Dye-sensitized Solar Cells Based on Sn-doped TiO2 Photoanodes: A Strategy for Choosing an Appropriate Doping Source[J]. Electrochim Acta, 2013, 107: 473-480.

[32]

Liu M, Shen ZR, Sun PC, et al. Synthesis and Characterization of Hierarchically Structured Mesoporous MnO2 and Mn2O3[J]. Solid State Sci., 2009, 11: 118-128.

[33]

Sakai N, Takada K, Sasaki T. Photocurrent Generation from Semiconducting Manganese Oxide Nanosheets in Response to Visible Light[J]. Phys. Chem. B, 2005, 109: 9651-9655.

[34]

Barakat NAM, Woo KD, Ansari SG, et al. Preparation of Nanofibers Consisting of MnO/Mn3O4 by Using the Electrospinning Technique: the Nanofibers Have Two Band-gap Energies[J]. Appl. Phys. A-Mater., 2009, 95: 769-776.

[35]

Rodrigues S, Munichandraiah N, Shukla AK. A Review of State-ofcharge Indication of Batteries by means of ac Impedance Measurements[J]. J.Power Sources, 2000, 87: 12-20.

[36]

Kang J, Hirata A, Kang LJ, et al. Enhanced Supercapacitor Performance of MnO2 by Atomic Doping[J]. Chem. Int. Ed., 2013, 52: 1664-1667.

AI Summary AI Mindmap
PDF

121

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/