Structural and electrochemical performances of α-MnO2 doped with tin for supercapacitors
Yang Li , Jing Li , Huaqing Xie , Fan Yang , Yuhong Zhou
Journal of Wuhan University of Technology Materials Science Edition ›› 2017, Vol. 32 ›› Issue (2) : 237 -244.
Structural and electrochemical performances of α-MnO2 doped with tin for supercapacitors
To improve the electrochemical performances of α-MnO2 as electrode materials for supercapacitors, Sn-doped α-MnO2 in the presence of the doping amount of 1%-4% was successfully synthesized by hydrothermal method. As-prepared α-MnO2 presents nanorod shape and no other impurities exist. By ultraviolet-visible absorption spectroscopy, it is convinced that the band gaps of α-MnO2 decrease with increasing Sn-doping amount. Cyclic voltammetry investigation indicates that undoped and doped α-MnO2 all have regular capacitive response. As the scan rate enlarged, the profiles of curves gradually deviate from rectangle. Compared with undoped α-MnO2, doped α-MnO2 has larger specific capacitance. The specific capacitance of 3% doped α-MnO2 reaches 241.0 F/g while undoped α-MnO2 only has 173.0 F/g under 50 mA/ g current density in galvanostatical charge-discharge measurement. Enhanced conductivity by Sn-doping is considered to account for doped sample’s enhanced electrochemical specific capacitance.
doping / capacitors / electrochemical characterizations / electronic conductivities
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
/
| 〈 |
|
〉 |