PDF
Abstract
Mo-C codoped TiO2 films were prepared by RF magnetron cosputtering. Ultraviolet-visible spectroscopy, atomic force microscopy, X-ray photoelectron spectroscopy, energy dispersive X-ray Analysis and X-Ray Diffraction were used to study the influences of codoping on energy gap, surface morphology, valence states of elements, ions content and crystal structure, respectively. The concentration of photogenerated carriers was measured by studying photocurrent density, while catalytic property was evaluated by observing degradation rate of methylene blue under visible light. A Mo-doped TiO2 film, whose content of Mo had been optimized in advance, was prepared and later used for subsequent comparisons with codoped samples. The result indicates that Mo-C codoping could curtail the energy gap and shift the absorption edge toward visible range. Under the illumination of visible light, codoped TiO2 films give rise to stronger photocurrent due to smaller band gaps. It is also found that Mo, C codoping results in a porous surface, whose area declines gradually with increasing carbon content. Carbon and Molybdenum doses were delicately optimized. Under the illumination of visible light, sample doped with 9.78at% carbon and 0.36at% Mo presents the strongest photocurrent which is about 8 times larger than undoped TiO2 films, and about 6 times larger than samples doped with Mo only.
Keywords
Mo-C codoping
/
TiO2 film
/
magnetron sputtering
/
photoelectric
/
photocatalytic property
Cite this article
Download citation ▾
Shengyun Luo, Bingxi Yan, Jie Shen.
Enhanced photoelectric property of Mo-C codoped TiO2 films deposited by RF magnetron cosputtering.
Journal of Wuhan University of Technology Materials Science Edition, 2017, 32(2): 223-228 DOI:10.1007/s11595-017-1584-z
| [1] |
Kang J, Lou X, Zhang X, et al. Effect of TiO2 on Crystallization of the Glass Ceramics Prepared from Granite Tailings[J]. J. Wuhan Univ. Technol.-Mater. Sci. Ed., 2015, 30(1): 22-26.
|
| [2] |
Yin S, Yang M, Yan Y. Preparation of V-doped TiO2 Photocatalysts by the Solution Combustion Method and Their Visible Light Photocatalysis Activities[J]. J. Wuhan Univ. Technol. -Mater. Sci. Ed., 2014, 29(5): 863-868.
|
| [3] |
Kubacka A, Colón G, Fernández-García M. Cationic (V, Mo, Nb, W) Doping of TiO2-anatase: A Real Alternative for Visible Light-driven Photocatalysts[J]. Catal. Today, 2009, 143(3): 286-292.
|
| [4] |
Sene JJ, Zeltner WA, Anderson MA. Fundamental Photoelectrocatalytic and Electrophoretic Mobility Studies of TiO2 and V-doped TiO2 Thinfilm Electrode Materials[J]. J. Phys. Chem. B, 2003, 107(7): 1597-1603.
|
| [5] |
Cao Y, Yang W, Zhang W, et al. Improved Photocatalytic Activity of Sn4+ Doped TiO2 Nanoparticulate Films Prepared by Plasma-enhanced Chemical Vapor Deposition[J]. New J. Chem., 2004, 28(2): 218-222.
|
| [6] |
Chang CC, Lin CK, Chan CC, et al. Photocatalytic Properties of Nanocrystalline TiO2 Thin Film with Ag Additions[J]. Thin Solid Films, 2006, 494(1): 274-278.
|
| [7] |
Zhang X, Zhang F, Chan KY. The Synthesis of Pt-modified Titanium Dioxide Thin Films by Microemulsion Templating, Their Characterization and Visible-light Photocatalytic Properties[J]. Mater. Chem. Phys., 2006, 97(2): 384-389.
|
| [8] |
Wu F, Hu X, Fan J, et al. Photocatalytic Activity of Ag/TiO2 Nanotube Arrays Enhanced by Surface Plasmon Resonance and Application in Hydrogen Evolution by Water Splitting[J]. Plasmonics, 2013, 8(2): 501-508.
|
| [9] |
Su R, Bechstein R, Kibsgaard J, et al. High-quality Fe-doped TiO2 Films with Superior Visible-light Performance[J]. J. Mater. Chem., 2012, 22(45): 23755-23758.
|
| [10] |
Yu J, Jimmy CY, Cheng B, et al. Photocatalytic Activity and Characterization of the Sol-gel Derived Pb-doped TiO2 Thin Films[J]. J. Sol-Gel Sci. Technol., 2002, 24(1): 39-48.
|
| [11] |
Ansari SG, Umar A, Al-Hajry A, et al. Effect of Flower Extracts on the Optoelectronic Properties of Cd and Sn Doped TiO2 Nanopowder[J]. Sci. Adv. Mater., 2012, 4(7): 763-770.
|
| [12] |
Di Valentin C, Pacchioni G, Selloni A, et al. Characterization of Paramagnetic Species in N-doped TiO2 Powders by EPR Spectroscopy and DFT Calculations[J]. J. Phys. Chem. B, 2005, 109(23): 11414-11419.
|
| [13] |
Wang X, Meng S, Zhang X, et al. Multi-type Carbon Doping of TiO2 Photocatalyst[J]. Chem. Phys. Lett., 2007, 444(4): 292-296.
|
| [14] |
Noworyta K, Augustynski J. Spectral Photoresponses of Carbon-doped TiO2 Film Electrodes[J]. Electrochem. Solid-State Lett., 2004, 7(6): E31-E33.
|
| [15] |
Choi Y, Umebayashi T, Yoshikawa M. Fabrication and Characterization of C-doped Anatase TiO2 Photocatalysts[J]. J. Mater. Sci., 2004, 39(5): 1837-1839.
|
| [16] |
Li H, Wang D, Fan H, et al. Synthesis of Highly Efficient C-doped TiO2 Photocatalyst and Its Photo-generated Charge-transfer Properties[J]. J. Colloid Interface Sci., 2011, 354(1): 175-180.
|
| [17] |
Vomiero A D, Della Mea G, Ferroni M, et al. Preparation and Microstructural Characterization of Nanosized Mo-TiO2 and Mo-W-O Thin Films by Sputtering: Tailoring of Composition and Porosity by Thermal Treatment[J]. Mater. Sci. Eng., B, 2003, 101(1): 216-221.
|
| [18] |
Liu H, Lu Z, Liu J, et al. (Mo+ N) codoped TiO2 for Enhanced Visiblelight Photoactivity[J]. Appl. Surf. Sci., 2011, 257(22): 9355-9361.
|
| [19] |
Gai Y, Li J, Li SS, et al. Design of Narrow-gap TiO2: A Passivated Codoping Approach for Enhanced Photoelectrochemical Activity[J]. Phys. Rev. Lett., 2009, 102(3): 036402
|
| [20] |
Dong P, Liu B, Wang Y, et al. Enhanced Photocatalytic Activity of (Mo, C)-codoped Anatase TiO2 Nanoparticles for Degradation of Methyl Orange under Simulated Solar Irradiation[J]. J. Mater. Res., 2010, 25(12): 2392-2400.
|
| [21] |
Zhang J, Pan C, Fang P, et al. Mo+ C Codoped TiO2 Using Thermal Oxidation for Enhancing Photocatalytic Activity[J]. ACS Appl. Mater. Interfaces, 2010, 2(4): 1173-1176.
|
| [22] |
Yan BX, Luo SY, Mao XG, et al. Unusual Photoelectric Behaviors of Mo-doped TiO2 Multilayer Thin Films Prepared by RF Magnetron Cosputtering: Effect of Barrier Tunneling on Internal Charge Transfer[J]. Appl. Phys. A, 2013, 110(1): 129-135.
|
| [23] |
Luo SY, Yan BX, Shen J. Enhancement of Photoelectronic and Photocatalytic activities: Mo Doped TiO2 Thin Films Deposited by Sputtering[J]. Thin Solid Films, 2012, 552: 361-365.
|
| [24] |
Luo SY, Yan BX, Shen J. Intense Photocurrent from Mo-Doped TiO2 Film with Depletion Layer Array[J]. ACS Appl. Mater. Interfaces, 2014, 6(12): 8942-8946.
|
| [25] |
Ghenzi N, Rozenberg MJ, Llopis R, et al. Tuning the Resistive Switching Properties of TiO2-x Films[J]. Appl. Phys. Lett., 2015, 106: 123509.
|
| [26] |
Yu JC, Yu J, Ho W, et al. Effects of F-doping on the Photocatalytic Activity and Microstructures of Nanocrystalline TiO2 powders[J]. Chem. Mater., 2002, 14(9): 3808-3816.
|
| [27] |
Yang K, Dai Y, Huang B, et al. Density Functional Characterization of the Visible-light Absorption in Substitutional C-anion-and C-cationdoped TiO2[J]. J. Phys. Chem. C, 2009, 113(6): 2624-2629.
|
| [28] |
Zhou B, Jiang X, Shen R, et al. Preparation and Characterization of TiO2 Thin Film by Thermal Oxidation of Sputtered Ti Film[J]. Mater. Sci. Semicond. Process., 2013, 16(2): 513-519.
|
| [29] |
Huang Y, Ho W, Lee S, et al. Effect of Carbon Doping on the Mesoporous Structure of Nanocrystalline Titanium Dioxide and Its Solar-light-driven Photocatalytic Degradation of NOx[J]. Langmuir, 2008, 24(7): 3510-3516.
|
| [30] |
Shi JW, Zong X, Wu X, et al. Carbon-doped Titania Hollow Spheres with Tunable Hierarchical Macroporous Channels and Enhanced Visible Light-induced Photocatalytic Activity[J]. Chem. Cat. Chem., 2012, 4(4): 488-491.
|
| [31] |
Tang D, Xiao W, Tian L, et al. Electrosynthesis of Ti2COn from TiO2/C Composite in Molten CaCl2: Effect of Electrolysis Voltage and Duration[J]. J. Electrochem. Soc., 2013, 160(11): F1192-F1196.
|
| [32] |
Dong F, Wang H, Wu Z. One-step “Green” Synthetic Approach for Mesoporous C-doped Titanium Dioxide with Efficient Visible Light Photocatalytic Activity[J]. J. Phys. Chem. C, 2009, 113(38): 16717-16723.
|
| [33] |
Wang HQ, Nann T. Monodisperse Upconverting Nanocrystals by Microwave-assisted Synthesis[J]. Acs Nano, 2009, 3(11): 3804-3808.
|
| [34] |
Li YF, Xu D, Oh JI, et al. Mechanistic Study of Codoped Titania with Nonmetal and Metal Ions: a Case of C+ Mo Codoped TiO2[J]. Acs Catalysis, 2012, 2(3): 391-398.
|
| [35] |
Ho P, Coltrin M E, Binkley J S, et al. Theoretical Study of the Heats of Formation of Si2Hn (n= 0–6) Compounds and Trisilane[J]. J. Phys. Chem., 1986, 90(15): 3399-3406.
|