Ab initio study of tunable band gap of monolayer and bilayer phosphorene by the vertical electronic field

Tao Wang , Wei Guo , Luowei Wen , Yan Liu , Bin Zhang , Kuang Sheng , You Yin

Journal of Wuhan University of Technology Materials Science Edition ›› 2017, Vol. 32 ›› Issue (1) : 213 -216.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2017, Vol. 32 ›› Issue (1) : 213 -216. DOI: 10.1007/s11595-017-1582-1
Biomaterials

Ab initio study of tunable band gap of monolayer and bilayer phosphorene by the vertical electronic field

Author information +
History +
PDF

Abstract

Using the ab initio plane-wave ultrasoft pseudopotential method based on generalized gradient approximation (GGA), we investigated the band-gap tuning in monolayer phosphorene (MLP) and bilayer phosphorene (BLP) by external electric fields applied perpendicular to the layers. The band continuously decreases with increasing applied electric fields, eventually rendering them metallic. For MLP, the phenomenon is explained in the light of the giant Stark effect, which is essentially characterized by the interlayer spacing, for the rate of change of bandgap with applied external field. The atomic distance and charges also contribute to the semiconductor-metal transition. The BLP is more sensitive to electric fields than MLP, since their charges are rearranged among bilayers and the bandgap can dramatically drop in terms of electronic field. The results show the bandgap will change for the fabrication of novel electronic and photonic devices.

Keywords

phosphorene / bandgap / electric field

Cite this article

Download citation ▾
Tao Wang, Wei Guo, Luowei Wen, Yan Liu, Bin Zhang, Kuang Sheng, You Yin. Ab initio study of tunable band gap of monolayer and bilayer phosphorene by the vertical electronic field. Journal of Wuhan University of Technology Materials Science Edition, 2017, 32(1): 213-216 DOI:10.1007/s11595-017-1582-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Liu H, Neal A T, Zhu Z, et al. Phosphorene: An Unexplored 2D Semiconductor with a High Hole Mobility[J]. ACS Nano, 2014, 8(4): 4033-4041.

[2]

Li L K, Yu Y J, Ye G J, et al. Black Phosphorus Field-effect Transistors [J]. Nature Nanotech., 2014, 9(5): 372-377.

[3]

Prytz O, Flage-Larsen E. The Influence of Exact Exchange Corrections in Van Der Waals Layered Narrow Bandgap Black Phosphorus[J]. J. Phys.: Condens. Matter., 2010, 22(1): 015502

[4]

Maruyama Y, Suzuki S, Kobayashi K, et al. Synthsis and some Properties of Black Phosphorus Single-crystals[J]. Physica B & C, 1981, 105(1-3): 99-102.

[5]

Morita A. Semiconducting Black Phosphorus[J]. Appl. Phys. A, 1986, 39(4): 227-242.

[6]

Keyes R W. The Electrical Properties of Black Phosphorus[J]. Phys. Rev., 1953, 92: 580-584.

[7]

Du Y, Ouyang C Y, Shi S Q e al. Ab initio Studies on Atomic and Electronic Structures of Black Phosphours[J]. J. Appl. Phys., 2010, 107(9): 093718

[8]

Takao Y, Morita A. Electronic Structure of Black Phosphorus: Tight Binding Approach[J]. Physica B & C, 1981, 105(1-3): 93-98.

[9]

Das S, Zhang W, Demarteau M, et al. Tunable Transport Gap in Phosphorene[J]. Nano Lett., 2014, 14(10): 5733-5739.

[10]

Qiao J S, Kong X H, Hu Z X, et al. High-mobility Transport Anisotropy and Linear Dichroism in Few-layer Black Phosphorus[J]. Nat. Commun., 2014, 5: 4475.

[11]

Segall M D, Lindan P L, Probert M J, et al. First-principles Simulation: Ideas, Illustrations and the CASTEP Code[J]. J. Phys.: Condens Matt., 2002, 14(11): 2717-2744.

[12]

Perdew J P, Burke K, Ernzerhof M. Generalized Gradient Approximation Made Simple[J]. Phys. Rev. Lett., 1996, 77(18): 3865-3868.

[13]

Zheng F W, Liu Z R, Wu J, et al. Scaling Law of the Giant Stark Effect in Boron Nitride Nanoribbons and Nanotubes[J]. Phys. Rev. B, 2008, 78(8): 085423

[14]

Khoo K H, Mazzoni S C, Louie S G. Tuning the Electronic Properties of Boron Nitride Nanotubes with Transverse Electric Fields: A Giant DC Stark Effect[J]. Phys. Rev. B, 2004, 69(20): 201401

[15]

Ishigami M, Sau J D, Aloni S, et al. Observation of the Giant Stark Effect in Boron-Nitride Nanotubes[J]. Phys.Rev. Lett., 2005, 94(5): 056804

AI Summary AI Mindmap
PDF

104

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/