Density function theory study of electronic, optical and thermodynamic properties of CaN2, SrN2 and BaN2

Shitao Xu , Liqin Zhang , Yan Cheng

Journal of Wuhan University of Technology Materials Science Edition ›› 2017, Vol. 32 ›› Issue (1) : 100 -105.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2017, Vol. 32 ›› Issue (1) : 100 -105. DOI: 10.1007/s11595-017-1566-1
Advanced Materials

Density function theory study of electronic, optical and thermodynamic properties of CaN2, SrN2 and BaN2

Author information +
History +
PDF

Abstract

We put forward a first-principles density-functional theory about the impact of pressure on the structural and elastic properties of bulk CaN2, SrN2 and BaN2. The ground state properties of three alkaline earth diazenides were obtained, and these were in good agreement with previous experimental and theoretical data. By using the quasi-harmonic Debye model, the thermodynamic properties including the debye temperature Θ D, thermal expansion coefficient α, and grüneisen parameter γ are successfully obtained in the temperature range from 0 to 100 K and pressure range from 0 to 100 GPa, respectively. The optical properties including dielectric function ε(ϖ), absorption coefficient α(ϖ), reflectivity coefficient R(ϖ), and refractive index n(ϖ) are also calculated and analyzed.

Keywords

density functional theory / alkaline earth diazenides / electronic structure / thermodynamic properties / optical properties / pH

Cite this article

Download citation ▾
Shitao Xu, Liqin Zhang, Yan Cheng. Density function theory study of electronic, optical and thermodynamic properties of CaN2, SrN2 and BaN2. Journal of Wuhan University of Technology Materials Science Edition, 2017, 32(1): 100-105 DOI:10.1007/s11595-017-1566-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Montoya J A, Hernandez C, Sanloup E, et al. OsN2: Crystal Structure and Electronic Properties[J]. Appl. Phys. Lett., 2007, 90: 011909.

[2]

Crowhurst J C, Goncharov B, Sadigh C L, et al. Synthesis and Characterization of the Nitrides of Platinum[J]. Science, 2006, 311: 275-1278.

[3]

VON Appen J, Lumey R. Mysterious Platinum Nitride [J]. Angew Chem. Int. Ed., 2006, 45: 4365-4368.

[4]

Auggrtmsnn G, Prots R. SrN and SrN2: Diazenides by Synthesis under high N2-Pressure[J]. Angew Chem. Int. Ed., 2001, 40: 547-549.

[5]

Vajenine G V, Auffermann Y, Prots W, et al. Preparation, Crystal Structure, and Properties of Barium Pernitride, BaN2[J]. Inorg. Chem., 2001, 40(19): 4866-4870.

[6]

Michael W, Richard D. A First-principles Study on the Existence and Structures of the Lighter Alkaline-earth Pernitrides[J]. J. Comput. Chem., 2010, 31: 1613-1317.

[7]

Vajenine G V, Auffermann G, Prots Y, et al. Preparation, Crystal Structure, and Properties of Barium Pernitride[J]. Inorg Chem., 2001, 40: 4866-4871.

[8]

Auffermann G, Schmidt U, Bayer B, et al. Redox-Intercalation of Hydrogen and Nitrogen in Alkaline-Earth Subnitrides[J]. Anal. Bionan. Chem., 2002, 373: 880-886.

[9]

Auffermann G, Kniep R, Bronger W Z. Reactive Gas Pressure Syntheses of Nitride-Diazenides and Hydridometalates[J]. Anorg. Allg. Chem., 2006, 632: 565-571.

[10]

Gregoryanz E, Sanlout C, Somayazulu M, et al. Synthesis and Characterization of a Binary Noble Metal Nitride [J]. Nat. Mater., 2004, 3: 294.

[11]

Von A J, Lumey M W, Dronskowski R. Schaltbare Hydrogele Durch Supramolekulare Vernetzung Adamantylhaltiger LCST-Copolymere Mit Cyclodextrin-Dimeren[J]. Angew. Chem., 2006, 118: 4468-4472.

[12]

Crowhurst J C, Goncharow A F, Sadigh B, et al. Synthesis and Characterization of the Nitrides of Platinum[J]. Science, 2006, 311: 1275-1278.

[13]

Young A F, Montoya J A, Sanloup C, et al. Interstitial Dinitrogen Mades PtN2 an Insulating Hard Solid[J]. Phys. Rev. B, 2006, 73: 153102.

[14]

Montoya J A, Hermandez A D, Sanloup C, et al. OsN: Crystal Structure and Electronic Properties[J]. Appl. Phys. Lett., 2007, 90: 011909.

[15]

Chen Z W, Guo X J, Liu Z Y, et al. Crystal Structure and Physical Properties of OsN2 and PtN2 in the Marcastte Phase[J]. Phys. Rev. B, 2007, 75: 054103.

[16]

Chen W, Jiang J Z. Stability, Elastic and Electronic Properties of Palladium Nitride[J]. Phys.: Condens. Matter., 2010, 22: 015404.

[17]

Yu R, Zhan Q, De Jonghe L C. Crystal Structures of and Displacive Transitions IN OsN2, IrN2, RuN2 and RhN2[J]. Angew. Chem., 2007, 119: 1154-1158.

[18]

Sebastain B S, Rainer F, Wolfgang S. Synthesis of Alkaline Earth Diazenides M(AE)N2(M(AE)=Ca, Sr, Ba) by Controlled Thermal Decomposition of Zaides under High Pressure[J]. Inorg. Chem., 2012, 51: 2366.

[19]

Milman V, Winkler B, White J A, et al. Electronic Structure, Properties, and Phase Stability of Inorganic Crystals: A Pseudopotential Plane-wave Study[J]. Int. J. Quantum. Chem., 2000, 77: 895-910.

[20]

Perdew J P, Burke K, Ernzerhof M. Pressure and Temperature Dependence of the Lattice Dynamics of CuAlO2 Investigated by Raman Scattering Experiments and ab initio Calculations[J]. Phys. Rev. Lett., 1996, 77: 3865.

[21]

Monkhorst H J, Pack J D. Special Points for Brillouin-zone Integrations[J]. Phys. Rev. B., 1976, 13: 5188-5192.

[22]

Vinet P, Rose J H, Ferrante J, et al. Universal Features of the Equation of State of Solids[J]. J. Phys.: Condens. Matter., 1989, 1: 1941-1964.

[23]

Blanco M A, Francisco E, Luana V. GIBBS: Isothermal-Isobaric Thermodynamics of Solids from Energy Curves Using a Quasi-harmonic Debye Model[J]. Comput. Phys. Commun., 2004, 158: 57-72.

[24]

Karki B B, Ackland G J, Crain J. Elastic Instabilities in Crystals from ab initio Stress-strain Relations[J]. J. Phys: Condens. Matter., 1997, 9: 8579.

[25]

Voigt W, Der K L. New Calculus for Treatment of Optical Syustems[J]. Teubner, Leipzip., 1956, 46: 121-131.

AI Summary AI Mindmap
PDF

114

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/