Crystal structure stability of simulated Sr1–1.5xY xTiO3 (x = 0–0.12) waste forms

Wanjun Mu , Qianhong Yu , Xingliang Li , Hongyuan Wei , Yuan Jian

Journal of Wuhan University of Technology Materials Science Edition ›› 2017, Vol. 32 ›› Issue (1) : 89 -93.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2017, Vol. 32 ›› Issue (1) : 89 -93. DOI: 10.1007/s11595-017-1564-3
Advanced Materials

Crystal structure stability of simulated Sr1–1.5xY xTiO3 (x = 0–0.12) waste forms

Author information +
History +
PDF

Abstract

A series of Sr1–1.5xY xTiO3 (x = 0–12) solid solutions were synthesized by a solid state reaction process. The effects of reaction temperature and dopant on the crystallinity, microstructure and morphology of Sr1–1.5xY xTiO3 (x=0–0.12) were investigated. Pure and single-phase perovskite-type Sr1–1.5xY xTiO3 (x<0.08) solid solutions were obtained at 1 400 °C for 6 h. The perovskite-type SrTiO3 and pyrochlore-phase Y2Ti2O7 coexisted for x = 0.08–0.12, leading to an unstable and unfavourable solid solution structure for long-term immobilization of the 90Sr. The X-ray diffraction patterns for Rietveld refinement analysis confirmed the formation of a Sr1–1.5xY xTiO3 (x = 0–0.12) continuous solid solution. Stretching and bending vibrations were assigned in the infrared region. The SrTiO3 grain size increased with Y content. The leaching behavior of Y3+ from the waste forms of Sr1–1.5xY xTiO3 was controlled by its structural change.

Keywords

perovskite-type / SrTiO3 / phase transition / temperature / leaching behavior

Cite this article

Download citation ▾
Wanjun Mu, Qianhong Yu, Xingliang Li, Hongyuan Wei, Yuan Jian. Crystal structure stability of simulated Sr1–1.5xY xTiO3 (x = 0–0.12) waste forms. Journal of Wuhan University of Technology Materials Science Edition, 2017, 32(1): 89-93 DOI:10.1007/s11595-017-1564-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Donald LW, Metcalfe B L, J Taylor R N. The Immobilization of High Level Radioactive Wastes Using Ceramics and Glasses[J]. J. Mater. Sci., 1997, 32: 5851-5887.

[2]

Nakayama S, Takahashi N, Itoh K. Leaching Property of Cesium Immobilized by Zirconium Phosphate under High Temperature[J]. J. Mater. Sci.Lett., 2001, 20: 513-518.

[3]

Itoh K, Nakayama S. Immobilization of Cesium by Crystalline Zirconium Phosphate[J]. J. Mater. Sci., 37: 1701–1709

[4]

Itoh K, Nakayama S. Immobilization of Stronium by Crystalline Zirconium Phosphate[J]. J. Euro. Ceram. Soc., 2003, 23: 1047-1053.

[5]

Yamasaki N, Yanagiswa K, Kanahara S, et al. Production of Hydroxyapatite-glass Compacts by Hydrothermal Hot-pressing Technique[J]. J.Nucl. Sci. Technol., 1984, 21: 71-78.

[6]

Tsunoda N. Immobilization of Barium, Cadmium and Antimony over Titania[J]. Ceram. Jpn, 1977, 12: 913-918.

[7]

Fujiki Y, Komatsu Y U, Yogyo KS. Immonilization of Divalent Transition Metals from Aqueous Solutions Using Crystalline Hydrated Titania fibers[J]. J. Mater. Sci., 1985, 93: 225-231.

[8]

Bhattacharyya D K, Dutta N C. A Study of the Immobilization of Strontium over Crystalline Titania[J]. J. Mater. Sci., 1995, 27: 5948-5952.

[9]

Bhattacharyya D K, Dutta N C. Immobilization of Barium, Cadmium and Antimony Cations over Zirconia[J]. J. Nucl. Sci. Technol., 1991, 28: 1014-1020.

[10]

Hungría T, Castro A. Grain Growth Control in NaNbO3-SrTiO3 Ceramics by Mechanosynthesis and Spark Plasma Sintering[J]. J. Mater. Synth. Proc., 2000 8

[11]

Xu H W, Navrotsky A, Su Y L, et al. Perovskite Solid Solutions along the NaNbO3-SrTiO3 John: Phase Transitions, Formation Enthapies and Implications for General Perovskite Energetics[J]. J. Mater. Sci.Lett., 2005, 17: 1880-1886.

[12]

Sasaki T, Komatsu U Y, Fujiki Y. Strontium Immobilization by Fibrous Cerium(IV) Bis(monohydrogenphosphate) Under Hydrothermal Conditions[J]. Bulletin of the Chemical Society of Japan, 1997, 70: 1701-1708.

[13]

Hungra T, Alguero M, Hungra A B. Fine-Grained Ba1-xSrxTiO3 Ceramics Prepared by the Combination of Mechanosynthesized Nnanopowders and Spark Plasma Sintering[J]. Chem. Mater., 2005, 17(24): 6205-6212.

[14]

Boldyrev V V, Tkacova K. Mechanochemistry of Solids: Past, Present, and Prospects[J]. J. Mater. Synth. Proc., 2000, 8: 121-132.

[15]

Ewing R C, Weber W J, Lian J. Nuclear Waste Disposal-Pyrochlore (A2B2O7): Nuclear Waste Form for the Immobilization of Plutonium and “Minor” Actinides[J]. J. Appl. Phys., 2004, 95: 5949-5971.

[16]

Wang S X, Begg B D, Wang L M, et al. Radiation Stability of Gadolinium Zirconate: A Waste Form for Plutonium Disposal[J]. J. Mater. Res., 1999, 14: 4470-4473.

[17]

Weber WJ, Ewing RC, Catlow CRA, et al. Radiation Efects in Crystalline Ceramics for the Immobilization of High-level Nuclear Waste and Plutonium Disposal[J]. J. Mater. Res., 1998, 13: 1434-1484.

[18]

Weber W J, Ewing R C. Plutonium Immobilization and Radiation Effects[J]. Science, 2000, 289: 2051-2052.

[19]

Donald IW, Metcalfe BL, Taylor RNJ. The Immobilization of High-Level Wastes Using Ceramics and Glasses[J]. J. Mater. Sci., 1997, 32: 5851-5887.

[20]

Terra O, Clavier N, Dacheux N, et al. Preparation of Optimized Uranium and Thorium Bearing Brabantite or Monazite/Brabantite Solid Solutions[J]. J. Am. Ceram. Soc., 2008, 91(11): 3673-3682.

[21]

Clarke DR. Ceramic Materials for Immobilization of Nuclear Waste[J]. Ann. Rev. Mater. Sci., 1983, 13: 191-218.

AI Summary AI Mindmap
PDF

100

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/