Hydrothermal synthesis and capacitance property of cobalt sulfide/graphene oxide nanocomposite

Ying Wei , Shengyi Zhang , Helin Niu , Changjie Mao , Jiming Song , Baokang Jin , Yupeng Tian

Journal of Wuhan University of Technology Materials Science Edition ›› 2017, Vol. 32 ›› Issue (1) : 80 -84.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2017, Vol. 32 ›› Issue (1) : 80 -84. DOI: 10.1007/s11595-017-1562-5
Advanced Materials

Hydrothermal synthesis and capacitance property of cobalt sulfide/graphene oxide nanocomposite

Author information +
History +
PDF

Abstract

The cobalt sulfide/graphene oxide (CoS/GO) nanocomposite was synthesized by a simple hydrothermal reaction. The products as-synthesized were characterized by XRD, SEM, TEM, BET-BJH and TG. The electrochemical property and impedance of the CoS/GO nanocomposite were studied by cyclic voltammetry and EIS analysis, respectively. The results show that the presence of the GO enhances the electrode conductivity, and then improves the capacitance property of the CoS/GO nanocomposite. The galvanostatic charge/discharge measurement results show that the CoS/GO nanocomposite has a high specific capacitance (550 Fg-1) and long cycle life (over 1 000 cycles).

Keywords

CoS / graphene / nanocomposite / synthesis / capacitance

Cite this article

Download citation ▾
Ying Wei, Shengyi Zhang, Helin Niu, Changjie Mao, Jiming Song, Baokang Jin, Yupeng Tian. Hydrothermal synthesis and capacitance property of cobalt sulfide/graphene oxide nanocomposite. Journal of Wuhan University of Technology Materials Science Edition, 2017, 32(1): 80-84 DOI:10.1007/s11595-017-1562-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Naoi K, Naoi W, Aoyagi S, et al. New Generation Nanohybrid Superca Pacitor[J]. Acc Chem. Res., 2013, 46(5): 1075-1083.

[2]

Wu Q, Xu YX, Yao ZY, et al. Supercapacitors Based on Flexible Graphene/Polyaniline Nanofiber Composite Films[J]. ACS Nano, 2010, 4(4): 1963-1970.

[3]

Dubal DP, Lee SH, Kim JG, et al. Porous Polypyrrole Clusters Prepared by Electropolymerization for a High Performance Supercapacitor[J]. J. Mater. Chem., 2012, 22: 3044-3052.

[4]

Wei D, Scherer MRJ, Bower C, et al. A Nanostructured Electrochromic Supercapacitor[J]. Nano Lett., 2012, 12: 1857-1862.

[5]

Kuratani K, Tanaka H, Takeuchi T, et al. Binderless Fabrication of Amorphous RuO2 Electrode for Electrochemical Capacitor using Spark Plasma Sintering Technique[J]. J. Power Sources, 2009, 191: 684-687.

[6]

Ragupathy P, Park DH, Campet G, et al. Remarkable Capacity Retention of Nanostructured Manganese Oxide upon Cycling as an Electrode Material for Supercapacitor[J]. J. Phys.Chem.C, 2009, 113: 6303-6309.

[7]

Justin P, Meher SK, Rao GR. Tuning of Capacitance Behavior of NiO Using Anionic, Cationic, and Nonionic Surfactants by Hydrothermal Synthesis[J]. J. Phys. Chem. C, 2010, 114: 5203-5210.

[8]

Marcinauskas L, Kavaliauskas Valinčius V. Carbon and Nickel Oxide/Carbon Composites as Electrodes for Supercapacitors[J]. J. Mater. Sci. Technol., 2012, 28: 931-936.

[9]

Zhang B, Ye XC, Dai W, et al. Biomolecule-Assisted Synthesis and Electrochemical Hydrogen Storage of Porous Spongelike Ni3S2 Nanostructures Grown Directly on Nickel Foils[J]. Chem. Eur. J., 2006, 12: 2337-2342.

[10]

Zhang B, Ye XC, Hou WY, et al. Biomolecule-assisted Synthesis and Electrochemical Hydrogen Storage of Bi2S3 Flowerlike Patterns with Well-aligned Nanorods[J]. J. Phys. Chem. B, 2006, 110: 8978-8985.

[11]

Sarma B, Ray RS, Misr M. Charge Storage in Flower-like ZnS Electrochemically Deposited on TiO2 Nanotube[J]. Mater. Lett., 2015, 139: 77-80.

[12]

Soon JM, Loh KP. Electrochemical Double-layer Capacitance of MoS2 Nanowall Films[J]. Electrochem. Solid State Lett., 2007, 10: A250-254.

[13]

Shi WH, Zhu JX, Rui XH, et al. Controlled Synthesis of Carbon Coated Cobalt Sulfide Nanostructures in Oil Phase with Enhanced Li Storage Performances[J]. ACS Appl. Mater. Interfaces, 2012, 5: 2999-3006.

[14]

Tao F, Zhao YQ, Zhang GQ, et al. Manganosite-microwave Exfoliated Graphene Oxide Composites for Asymmetric Supercapacitor Device Applications[J]. Electrochem. Commun., 2007, 9: 1282-1287.

[15]

Bao SJ, Li CM, Guo CX, et al. Biomolecule-assisted Synthesis of Cobalt Sulfide Nanowires for Application in Supercapacitors[J]. J. Power Sources, 2008, 180: 676-681.

[16]

Justin P, Rao GR. CoS Spheres for High-rate Electrochemical Capacitive Energy Storage Application[J]. Int. J. Hydrogen Energ., 2010, 35: 9709-9715.

[17]

Dennis A, Kanlaya P, Mark SR, et al. Manganosite-microwave Exfoliated Graphene Oxide Composites for Asymmetric Supercapacitor Device Applications[J]. Electrochimica Acta, 2013, 101: 99-108.

[18]

Wang HL, Cui LF, Yang Y, et al. Mn3O4-graphene Hybrid as a High-Capacity Anode Material for Lithium Ion Batteries[J]. J. Am. Chem. Soc., 2010, 132: 13978-13980.

[19]

Wu ZS, Wang DW, Ren W, et al. Anchoring Hydrous RuO2 on Graphene Sheets for High-performance Electrochemical Capacitors[J]. Adv. Funct. Mater., 2010, 20: 3595-3602.

[20]

Ervin MH, Le LT, Lee WY. Inkjet-Printed Flexible Graphene-Based Supercapacitor[J]. Electrochim. Acta, 2014, 147: 610-616.

[21]

Xu YX, Bai H, Lu GW, et al. Flexible Graphene Films Via the Filtration of Water-soluble Noncovalent Functionalized Graphene Sheets[J]. J. Am. Chem. Soc., 2008, 130: 5856-5857.

[22]

Li D, Muller MB, Gilje S, et al. Processable Aqueous Dispersions of Graphene Nanosheets[J]. Nat. Nanotechnol., 2008, 3: 101-105.

[23]

Xiang HF, Tian BB, Lian PC, et al. Sol-gel Synthesis and Electrochemical Performance of Li4Ti5O12/Graphene Composite Anode for Lithium-ion Batteries[J]. J. Alloy. Compd., 2011, 509: 7205-7209.

[24]

Huang YJ, Qin YW, Zhou Y, et al. Polypropylene/Graphene Oxide Nanocomposites Prepared by in Situ Ziegler-Natta Polymerization[J]. Chem. Mater., 2010, 22: 4096-4102.

[25]

Dong WJ, Wang XB, Li BJ, et al. Hydrothermal Synthesis and Structure Evolution of Hierarchical Cobalt Sulfide Nanostructures[J]. Dalton T., 2011, 40: 243-248.

[26]

Zhang SS, Xu K, Jow TR. Electrochemical Impedance Study on the Low Temperature of Li-ion Batteries[J]. Electrochim. Acta, 2004, 49(7): 1057-1061.

[27]

Bard AJ, Abruiia HD, Chidsey CE, et al. The Electrode/Electrolyte Interface-a Status Report[J]. J. Phys. Chem., 1993, 97: 7147-7173.

[28]

Lin C, Ritter JA, Popov BN. Characterization of Sol-gel-derived Cobalt Oxide Xerogels as Electrochemical Capacitors[J]. J. Electrochem. Soc., 1998, 145: 4097-4103.

AI Summary AI Mindmap
PDF

114

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/