Synthesis of mesoporous silica-embedded TiO2 loaded with Ag nanoparticles for photocatalytic hydrogen evolution from water splitting

Xiuli Hu , Leqin Xiao , Xiaoxia Jian , Weiliang Zhou

Journal of Wuhan University of Technology Materials Science Edition ›› 2017, Vol. 32 ›› Issue (1) : 67 -75.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2017, Vol. 32 ›› Issue (1) : 67 -75. DOI: 10.1007/s11595-017-1560-7
Advanced Materials

Synthesis of mesoporous silica-embedded TiO2 loaded with Ag nanoparticles for photocatalytic hydrogen evolution from water splitting

Author information +
History +
PDF

Abstract

Ag loaded mesoporous silica-embedded TiO2 nanocomposites were successfully synthesized via two different routes, including one-pot solvothermal method and solvothermal-chemical reduction method, both using Titanium (IV) n-butoxide (Ti(OC4H9)4) as a precursor, formic acid as a solvent and reducing agent, silver nitrate as a silver source and tetraethyl silicate (TEOS) as a stabilizer. The transmission electron microscopic (TEM) images showed that silica-embedded anatase TiO2 sample exhibited approximately rhombic shape and Ag nanoparticles could be embedded into the nanocomposites or deposited on the surface with high dispersion. The N2 adsorption-desorption isotherms indicated that the silica-embedded anatase TiO2 had obvious mesoporous structure with a BET specific surface area of 203.5 m2·g-1. All Ag loaded silica-embedded TiO2 composites showed a higher photocatalytic H2-generation activity from water splitting under simulative solar light irradiation than that of TiO2 products. The maximum H2 production rate (6.10 mmol·h-1·g-1) was obtained over 2% Ag/silica-embedded TiO2 nanocomposites (2% Ag/MST) prepared by solvothermal-chemical reduction method, which was 20 times that achieved on the silica-embedded TiO2 sample. The enhanced photocatalytic H2-evolution activity of Ag loaded mesoporous silica-embedded TiO2 nanocomposites can be attributed to the multi-function of surface Ag co-catalyst, mesoporous structure, and embedding of silica.

Keywords

hydrogen production / Ag co-catalyst / mesopore / silica-embedding / TiO2

Cite this article

Download citation ▾
Xiuli Hu, Leqin Xiao, Xiaoxia Jian, Weiliang Zhou. Synthesis of mesoporous silica-embedded TiO2 loaded with Ag nanoparticles for photocatalytic hydrogen evolution from water splitting. Journal of Wuhan University of Technology Materials Science Edition, 2017, 32(1): 67-75 DOI:10.1007/s11595-017-1560-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Leung DYC, Fu XL, Wang CF, et al. Hydrogen Production over Titania-Based Photocatalysts[J]. Chemsuschem, 2010, 3: 681-694.

[2]

Yu JG, Qi LF, Jaroniec M. Hydrogen Production by Photocatalytic Water Splitting over Pt/TiO2 Nanosheets with Exposed (001) Facets[J]. The Journal of Physical Chemistry C, 2010, 114: 13118-13125.

[3]

Fujishima A, Honda K. Electrochemical Photolysis of Water at a Semiconductor Electrode[J]. Nature, 1972, 238: 37-39.

[4]

Korzhak AV, Ermokhina NI, Stroyuk AL, et al. Photocatalytic Hydrogen Evolution over Mesoporous TiO2/Metal Nanocomposites[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2008, 198: 126-134.

[5]

Montini T, Gombac V, Sordelli L, et al. Nanostructured Cu/TiO2 Photocatalysts for H2 Production from Ethanol and Glycerol Aqueous Solutions[J]. Chem. Cat. Chem., 2011, 3: 574-577.

[6]

Xing MY, Zhang JL, Chen F, et al. An Economic Method to Prepare Vacuum Activated Photocatalysts with High Photo-Activities and Photosensitivities[J]. Chemical Communications, 2011, 47: 4947-4949.

[7]

Liu SW, Yu JG, Jaroniec M. Anatase TiO2 with Dominant High-Energy {001} Facets: Synthesis, Properties, and Applications[J]. Chemistry of Materials, 2011, 23: 4085-4093.

[8]

Amano F, Prieto-Mahaney OO, Terada Y, et al. Decahedral Single-Crystalline Particles of Anatase Titanium(IV) Oxide with High Photocatalytic Activity[J]. Chemistry of Materials, 2009, 21: 2601-2603.

[9]

Yang XH, Fu HT, Yu AB, et al. Large-Surface Mesoporous TiO2 Nanoparticles: Synthesis, Growth and Photocatalytic Performance[J]. Journal of Colloid and Interface Science, 2012, 387: 74-83.

[10]

Kang SZ, Yin DE, Li XQ, et al. One-Pot Template-Free Preparation of Mesoporous TiO2 Hollow Spheres and Their Photocatalytic Activity[J]. Materials Research Bulletin, 2012, 47: 3065-3069.

[11]

Miao G, Chen LF, Qi ZW. Facile Synthesis and Active Photocatalysis of Mesoporous and Microporous TiO2 Nanoparticles[J]. European Journal Inorganic Chemistry, 2012, 35: 5864-5871.

[12]

Sreethawong T, Suzuki Y, Yoshikawa S. Photocatalytic Evolution of Hydrogen over Nanocrystalline Mesoporous Titania Prepared by Surfactant-Assisted Templating Sol-Gel Process[J]. Catalysis Communications, 2005, 6(2): 119-124.

[13]

Cheng P, Zheng MP, Jin YP, et al. Preparation and Characterization of Silica-Doped Titania Photocatalyst through Sol-Gel Method[J]. Materials Letters, 2003, 57(20): 2989-2994.

[14]

Kusakabe K, Ezaki M, Sakoguchi A, et al. Photocatalytic Behaviors of Silica-Loaded Mesoporous Titania[J]. Chemical Engineering Journal, 2012, 180: 245-249.

[15]

Yao XX, Zhao CB, He R, et al. Highly Crystalline and Silica-Embedded Titania Rhombic Shaped Nanoparticles with Mesoporous Structure and Its Application in Photocatalytic Degradation of Organic Compound[J]. Materials Chemistry and Physics, 2013, 141: 705-712.

[16]

Zhang MH, Shi LY, Yuan S, et al. Synthesis and Photocatalytic Properties of Highly Stable and Neutral TiO2/SiO2 Hydrosol [J]. Journal of Colloid and Interface Science, 2009, 330(1): 113-118.

[17]

Rungjaroentawon N, Onsuratoom S, Chavadej S. Hydrogen Production from Water Splitting under Visible Light Irradiation Using Sensitized Mesoporous-Assembled TiO2-SiO2 Mixed Oxide Photocatalysts[J]. International Journal of Hydrogen Energy, 2012, 37(15): 11061-11071.

[18]

Sreethawong T, Yoshikawa S. Comparative Investigation on Photocatalytic Hydrogen Evolution over Cu-, Pd-, and Au-Loaded Mesoporous TiO2 Photocatalysts[J]. Catalysis Communications, 2005, 6(10): 661-668.

[19]

Jing DW, Zhang YJ, Guo LJ. Study on the Synthesis of Ni Doped Mesoporous TiO2 and Its Photocatalytic Activity for Hydrogen Evolution in Aqueous Methanololution[J]. Chemical Physics Letters, 2005, 415: 74-78.

[20]

Shah MSAS, Zhang K, Park AR, et al. Single-Step Solvothermal Synthesis of Mesoporous Ag-TiO2-Reduced Graphene Oxide Ternary Composites with Enhanced Photocatalytic Activity[J]. Nanoscale, 2013, 5: 5093-5101.

[21]

Xie KP, Sun L, Wang CL, et al. Photoelectrocatalytic Properties of Ag Nanoparticles Loaded TiO2 Nanotube Arrays Prepared by Pulse Current Deposition[J]. Electrochimica Acta, 2010, 55(24): 7211-7218.

[22]

Jung MH, Yun YJ, Chu MJ, et al. Fabrication of Ag Nanoparticles Embedded in TiO2 Nanotubes: Using Electrospun Nanofibers for Controlling Plasmonic Effects[J]. Chemistry A European Journal, 2013, 19(26): 8543-8549.

[23]

Hirakawa T, Kamat PV. Charge Separation and Catalytic Activity of Ag@TiO2 Core-Shell Composite Clusters under UV-Irradiation[J]. Journal of American Chemical Society, 2005, 127: 3928-3934.

[24]

Height MJ, Pratsinis SE, Mekasuwandumrong O, et al. Ag-ZnO Catalysts for UV-Photodegradation of Methylene Blue[J]. Applied Catalysis B: Environmental, 2006, 63: 305-312.

[25]

Lai YL, Meng M, Yu YF. One-Step Synthesis, Characterizations and Mechanistic Study of Nanosheets-Constructed Fluffy ZnO and Ag/ZnO Spheres Used for Rhodamine B Photodegradation[J]. Applied Catalysis B: Environmental, 2010, 100: 491-501.

[26]

Wu NL, Lee MS. Enhanced TiO2 Photocatalysis by Cu in Hydrogen Production from Aqueous Methanol Solution[J]. International Journal of Hydrogen Energy, 2004, 29(15): 1601-1605.

[27]

Cheng B, Le Y, Yu JG. Preparation and Enhanced Photocatalytic Activity of Ag@TiO2 Core-Shell Nanocomposite Nanowires[J]. Journal of Hazardous Materials, 2010, 177: 971-977.

[28]

Wang D, Zhou ZH, Yang H, et al. Preparation of TiO2 Loaded with Crystalline Nano Ag by a One-Step Low-Temperature Hydrothermal Method[J]. Journal of Materials Chemistry, 2012, 22: 16306-16311.

[29]

Su CY, Liu L, Zhang MY, et al. Fabrication of Ag/TiO2 Nanoheterostructures with Visible Light Photocatalytic Function Via A Solvothermal Approach[J]. Cryst. Eng. Comm., 2012, 14: 3989-3999.

[30]

Xiang QJ, Yu JG, Cheng B, Ong HC. Microwave-Hydrothermal Preparation and Visible-Light Photoactivity of Plasmonic Photocatalyst Ag-TiO2 Nanocomposite Hollow Spheres[J]. Chemistry An Asian Journal, 2010, 5(6): 1466-1474.

[31]

Ye JF, Liu W, Cai JG, et al. Nanoporous Anatase TiO2 Mesocrystals: Additive-Free Synthesis, Remarkable Crystalline-Phase Stability, and Improved Lithium Insertion Behavior[J]. Journal of Amican Chemical Society, 2011, 133(4): 933-940.

[32]

Sun SD, Zhang XZ, Zhang J, et al. Surfactant-Free CuO Mesocrystals with Controllable Dimensions: Green Ordered-Aggregation-Driven Synthesis, Formation Mechanism and Their Photochemical Performances[J]. Cryst. Eng. Comm., 2013, 15: 867-877.

[33]

Li JX, Xu JH, Dai WL, et al. Dependence of Ag Deposition Methods on the Photocatalytic Activity and Surface State of TiO2 with Twistlike Helix Structure[J]. The Journal of Physical Chemistry C, 2009, 113(19): 8343-8349.

[34]

Zhang JY, Wang YH, Zhang J, et al. Enhanced Photocatalytic Hydrogen Production Activities of Au-Loaded ZnS Flowers[J]. ACS Applied Materials & Interfaces, 2013, 5(3): 1031-1037.

[35]

He ZL, Que WX, He YC. Synthesis and Characterization of Bioinspired Hierarchical Mesoporous TiO2 Photocatalysts[J]. Materials Letters, 2013, 94: 136-139.

[36]

Yu JG, Wang GH, Cheng B, et al. Effects of Hydrothermal Temperature and Time on the Photocatalytic Activity and Microstructures of Bimodal Mesoporous TiO2 Powders[J]. Applied Catalysis B: Environmental, 2007, 69: 171-180.

[37]

Chen QF, Ma WH, Chen CC, et al. Anatase TiO2 Mesocrystals Enclosed by (001) and (101) Facets: Synergistic Effects between Ti3+ and Facets for Their Photocatalytic Performance[J]. Chemistry A European Journal, 2012, 18(40): 12584-12589.

[38]

Yu JG, Xiong JF, Cheng B, et al. Fabrication and Characterization of Ag-TiO2 Multiphase Nanocomposite Thin Flms with Enhanced Photocatalytic Activity[J]. Applied Catalysis B: Environmental, 2005, 60: 211-221.

[39]

Yu JG, Hai Y, Cheng B. Enhanced Photocatalytic H2-Production Activity of TiO2 by Ni(OH)2 Cluster Modification[J]. The Journal of Physical Chemistry C, 2011, 115(11): 4953-4958.

[40]

Xie W, Li YZ, Sun W, et al. Surface Modification of ZnO with Ag Improves Its Photocatalytic Efficiency and Photostability[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2010, 216: 149-155.

[41]

Georgekutty R, Seery MK, Pillai SC. A Highly Efficient Ag-ZnO Photocatalyst: Synthesis, Properties, and Mechanism[J]. The Journal of Physical Chemistry C, 2008, 112(35): 13563-13570.

[42]

Li HX, Bian ZF, Zhu J, et al. Mesoporous Au/TiO2 Nanocomposites with Enhanced Photocatalytic Activity[J]. Journal of the American Chemical Society, 2007, 129(15): 4538-4539.

[43]

Wang XW, Liu G, Chen Z G, et al. Enhanced Photocatalytic Hydrogen Evolution by Prolonging the Lifetime of Carriers in ZnO/CdS Heterostructures[J]. Chemical Communications, 2009 3452-3454.

[44]

Galińska A, Walendziewski J. Photocatalytic Water Splitting over Pt-TiO2 in the Presence of Sacrificial Reagents[J]. Energy & Fuel, 2005, 19(3): 1143-1147.

[45]

Behar D, Rabani J. Kinetics of Hydrogen Production upon Reduction of Aqueous TiO2 Nanoparticles Catalyzed by Pd0, Pt0, or Au0 Coatings and an Unusual Hydrogen Abstraction; Steady State and Pulse Radiolysis Study[J]. The Journal of Physical Chemistry B, 2006, 110(17): 8750-8755.

[46]

Kamat PV. Meeting the Clean Energy Demand: Nanostructure Architectures for Solar Energy Conversion[J]. The Journal of Physical Chemistry C, 2007, 111(7): 2834-2860.

[47]

Chen XB, Shen SH, Guo LJ, et al. Semiconductor-Based Photocatalytic Hydrogen Generation[J]. Chemical Reviews, 2010, 110(11): 6503-6570.

AI Summary AI Mindmap
PDF

123

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/