Effects of rare earth oxides on viscosity, thermal expansion, and structure of alkali-free boro-aluminosilicate glass

Yansheng Hou , Jian Yuan , Junfeng Kang , Jingjing Cui , Jinshu Cheng , Jing Cui

Journal of Wuhan University of Technology Materials Science Edition ›› 2017, Vol. 32 ›› Issue (1) : 58 -62.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2017, Vol. 32 ›› Issue (1) : 58 -62. DOI: 10.1007/s11595-017-1558-1
Advanced Materials

Effects of rare earth oxides on viscosity, thermal expansion, and structure of alkali-free boro-aluminosilicate glass

Author information +
History +
PDF

Abstract

Effects of rare earth oxides (Y2O3, La2O3, and Er2O3) on the viscosity, thermal expansion, and structure of alkali-free boro-aluminosilicate glasses were investigated by the rotating crucible viscometer, dilatometry and FT-IR absorption spectra. The results showed that the melting temperature of alkali-free boro-aluminosilicate glasses decreased from 1 697.55 to 1 662.59, 1 674.37 and 1 640.87 °C with the introduction of 1 mol% La2O3, Y2O3 and Er2O3, respectively. However, the glass transition temperature T g, dilatometric softening temperature T d and coefficient of thermal expansion of alkali-free boro-aluminosilicate glasses increased when adding the rare-earth oxides. At high temperatures, incorporating rare earth oxides into glass resulted in the peak at about 1 085 cm-1 towards lower wavenumber and the absorption band in the region of 850-1 260 cm-1 broader, which indicated that rare earths acted as network modifiers and increased the numbers of non-bridging oxygen in the glass melts. However, the rare earths had an opposite effect and accumulated the glass structure at low temperatures near T g.

Keywords

viscosity / structure / boro-aluminosilicate / rare earth oxides

Cite this article

Download citation ▾
Yansheng Hou, Jian Yuan, Junfeng Kang, Jingjing Cui, Jinshu Cheng, Jing Cui. Effects of rare earth oxides on viscosity, thermal expansion, and structure of alkali-free boro-aluminosilicate glass. Journal of Wuhan University of Technology Materials Science Edition, 2017, 32(1): 58-62 DOI:10.1007/s11595-017-1558-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Kolesov Y I, Malashkina T G, Platonov R I. Effect of Certain Technological Factors on the Degree of Volatilization of B2O3 When Melting Alkali-Free Alumoborosilicate Glass for the Production of Glass Fiber[J]. Glass Ceram., 1970, 27(5): 280-283.

[2]

Tian Y L, Guo X L, Zhu M K, et al. High Temperature Resistance Effect of SrO/(SrO+CaO) in Alkali-Free Boro-Aluminosilicate Glasses[J]. Adv. Mater. Res., 2013, 704: 149-154.

[3]

Zhernovaya N F, Min’Ko N I, Onishchuk V I, et al. Effectiveness of Sulfate Clarification of Type E Alkali-Free Glass[J]. Glass Ceram., 2008, 65(3): 109-112.

[4]

Tian L X, Li G F, Wu G W. Summary of TFT-LCD Glass Substrate[J]. Glass, 2009, 36(5): 46-49.

[5]

Wang J, Cheng J S, Deng Z L. Effect of Alkali Metal Oxides on Viscosity and Crystallization of the MgO-Al2O3-SiO2 Glasses[J]. Physica B, 2013, 415: 34-37.

[6]

Cheng J S, Tian Y L, Zhang L, et al. Effects of the Ratio of SrO/CaO on the Coefficient of Thermal Expansion and Low Temperature Characteristic Viscosity Reference Points of Alkali-free Boroaluminosilicate Glasses[J]. J. Mat. Sci. Eng., 2012, 30(1): 98-101.

[7]

Lin P, Zhao G, Hao Y, et al. Infrared Spectra of Alkali-Free Aluminoborosilicate Glass Structure[J]. J. Chin. Ceram. Soc., 2007, 35(7): 856-855.

[8]

Johnson J, Weber R, Grimsditch M. Thermal and Mechanical Properties of Rare Earth Aluminate and Low-Silica Aluminosilicate Optical Glasses[J]. J. Non-Cryst. Solids, 2005, 351(8-9): 650-655.

[9]

Wang M T, Li M, Cheng J S, et al. Structure and Viscosity of Soda Lime Silicate Glasses with Varying Gd2O3 Content[J]. J. Mol. Struct., 2014, 1063(16): 139-144.

[10]

Wang M T, Cheng J S. Viscosity and Thermal Expansion of Rare Earth Containing Soda-Lime-Silicate Glass[J]. J. Alloys Compd., 2010, 504(1): 273-276.

[11]

Wang M T, Cheng J S, Li M. Effect of Rare Earths on Viscosity and Thermal Expansion of Soda-Lime-Silicate Glass[J]. J. Rare Earth., 2010, 28(S1): 308-311.

[12]

Hrma P. Arrhenius Model for High-Temperature Glass Viscosity with a Constant Pre-Exponential Factor[J]. J. Non-Cryst. Solids, 2008, 354(18): 1962-1968.

[13]

Shimizu F, Tokunaga H, Saito N, et al. Viscosity and Surface Tension Measurements of RE2O3-MgO-SiO2 (RE=Y, Gd, Nd and La) Melts[J]. ISIJ Int., 2006, 46(3): 388-393.

[14]

Condrate S R A. Infrared and Raman Spectra of Glasses Containing Rare Earth Ions[J]. Key Eng. Mater., 1994, 94–95(5): 209-232.

[15]

Clayden N J, Esposito S, Aronne A, et al. Solid State 27Al NMR and FTIR Study of Lanthanum Aluminosilicate Glasses[J]. J. Non-Cryst. Solids, 1999, 258(1): 11-19.

[16]

Waclawska I. Glass Transition Effect of Amorphous Borates[J]. Thermochim. Acta, 1995, 269–270: 457-464.

[17]

Song S, Wen Z, Liu Y, et al. Influence of Dopants on the Crystallization of Borosilicate Glass[J]. Ceram. Int., 2009, 35(8): 3037-3042.

[18]

Zeng H, Yang Y, Lin Z, et al. The Effect of B2O3 on the Luminescent Properties of Eu Ion-Doped Aluminoborosilicate Glasses[J]. J. Non-Cryst. Solids, 2011, 357(11): 2328-2331.

[19]

Aronne A, Esposito S, Pernice P. FTIR and DTA Study of Lanthanum Aluminosilicate Glasses[J]. Mater. Chem. Phys., 1997, 51(2): 163-168.

[20]

Stoch L, Środa M. Infrared Spectroscopy in the Investigation of Oxide Glasses Structure[J]. J. Mol. Struct., 1999, 511(1): 77-84.

[21]

Wang M T, Li M, Cheng J S, et al. Free Volume and Structure of Gd2O3 and Y2O3 Co-Doped Silicate Glasses[J]. J. Non-Cryst. Solids, 2013, 379: 145-149.

[22]

Gaafar M S, Marzouk S Y. Mechanical and Structural Studies on Sodium Borosilicate Glasses Doped with Er2O3 Using Ultrasonic Velocity and FTIR Spectroscopy[J]. Physica B, 2007, 388(1-2): 294-302.

[23]

Liu S, Kong Y, Tao H, et al. Crystallization of a Highly Viscous Multicomponent Silicate Glass: Rigidity Percolation and Evidence of Structural Heterogeneity[J]. J. Eur. Ceram. Soc., 2017, 37(2): 715-720.

[24]

Han X, Tao H, Gong L, et al. Origin of the Frequency Shift of Raman Scattering in Chalcogenide Glasses[J]. J. Non-Cryst. Solids, 2014, 391(3): 117-119.

[25]

Tao H, Zhao X, Liu Q. Optical Non-Linearity in Nano-and Micro-Crystallized Glasses[J]. J. Non-Cryst. Solids, 2013, 377(10): 146-150.

[26]

Chen H, Tao H, Wu Q, et al. Crystallization Kinetics of Superionic Conductive Al (B, La )-Incorporated LiTi2(PO4)3 Glass-Ceramics[J]. J. Am. Ceram. Soc., 2013, 96(3): 801-805.

[27]

Li H, Li L, Vienna J D, et al. Neodymium(III) in Aluminoborosilicate Glasses[J]. J. Non-Cryst. Solids, 2000, 278(1-3): 35-57.

[28]

Du L S, Stebbins J F. Network Connectivity in Aluminoborosilicate Glasses: a High-Resolution 11B, 27Al and 17O NMR Study[J]. J. Non-Cryst. Solids, 2005, 351(43-45): 3508-3520.

[29]

Du L S, Stebbins J F. Nature of Silicon-Boron Mixing in Sodium Borosilicate Glasses: a High-Resolution B-11 and O-17 NMR Study[J]. J. Phys. Chem. B, 2003, 107(37): 10063-10076.

AI Summary AI Mindmap
PDF

133

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/