Preparation and characterization of superparamagnetic Fe3O4/CNTs nanocomposites dual-drug carrier

Xiaojuan Zhang , Lingyun Hao , Hehe Wang , Xingqun Zhu , Zhiying Zhang , Xiaohong Hu , Wei Jiang

Journal of Wuhan University of Technology Materials Science Edition ›› 2017, Vol. 32 ›› Issue (1) : 42 -46.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2017, Vol. 32 ›› Issue (1) : 42 -46. DOI: 10.1007/s11595-017-1555-4
Advanced Materials

Preparation and characterization of superparamagnetic Fe3O4/CNTs nanocomposites dual-drug carrier

Author information +
History +
PDF

Abstract

Fe3O4/carbon nanotubes (Fe3O4/CNTs) nanocomposites were prepared by polylol high-temperature decomposition of the precursor ferric chloride and CNTs in liquid triethylene glycol. After surface modification with hexanediamine, folate was covalently linked to the amine group of magnetic Fe3O4/CNTs nanocomposites. The products were characterized by Fourier-transform infrared spectroscopy, transmission electron microscopy, and vibrating sample magnetometry. Then Fe3O4/CNTs were used as a dual-drug carrier to co-delivery of the hydrophilic drug epirubicin hydrochloride and hydrophobic drug paclitaxel. The results indicated that the Fe3O4/CNTs had a favorable release property for epirubicin and paclitaxel, and thus had potential application in tumor-targeted combination chemotherapy.

Keywords

Fe3O4/CNTs / nanocomposites / dual-drug carrier / epirubicin / paclitaxel

Cite this article

Download citation ▾
Xiaojuan Zhang, Lingyun Hao, Hehe Wang, Xingqun Zhu, Zhiying Zhang, Xiaohong Hu, Wei Jiang. Preparation and characterization of superparamagnetic Fe3O4/CNTs nanocomposites dual-drug carrier. Journal of Wuhan University of Technology Materials Science Edition, 2017, 32(1): 42-46 DOI:10.1007/s11595-017-1555-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Duong H H P, Yung L Y L. Synergistic Co-delivery of Doxorubicin and Paclitaxel using Multi-functional Micelles for Cancer Treatment[J]. Int. J. Pharm., 2013, 454: 486-495.

[2]

Lorenzen S, Pauligk C, Homann N, et al. Feasibility of Perioperative Chemotherapy with Infusional 5-FU, Leucovorin, and Oxaliplatin with (FLOT) or without (FLO) Docetaxel in Elderly Patients with Locally Advanced Esophagogastric Cancer[J]. Br. J. Cancer, 2013, 108: 519-526.

[3]

Maughan T S, Adams R A, Smith C G, et al. Addition of Cetuximab to Oxaliplatin-based First-line Combination Chemotherapy for Treatment of Advanced Colorectal Cancer: Results of the Randomised Phase 3 MRC COIN Trial[J]. Lancet, 2011, 377: 2103-2114.

[4]

Blackwell K L, Burstein H J, Storniolo A M, et al. Randomized Study of Lapatinib Alone or in Combination with Trastuzumab in Women with ErB2-positive, Trastuzumab-refractory Metastatic Breast Cancer[J]. J. Clin. Oncol., 2010, 28(7): 1124-1130.

[5]

Xu J Q, Jiao Y P, Shao X H, et al. Controlled Dual Release of Hydrophobic and Hydrophilic Drugs from Electrospun Poly (l-lactic acid) Fiber Mats Loaded with Chitosan Microspheres[J]. Mater. Lett., 2011, 65: 2800-2803.

[6]

Liu D F, Bimbo L M, Mäkilä E, et al. Co-delivery of a Hydrophobic Small Molecule and a Hydrophilic Peptide by Porous Silicon Nanoparticles[J]. J. Control. Release, 2013, 170: 268-278.

[7]

Pradhan L, Srivastava R, Bahadur D. pH-and Thermosensitive Thin Lipid Layer Coated Mesoporous Magnetic Nanoassemblies as A Dual Drug Delivery System towards Thermochemotherapy of Cancer[J]. Acta Biomater., 2014, 10: 2976-2987.

[8]

Ashwanikumar N, Kumar N A, Nair S A, et al. Dual Drug Delivery of 5-Fluorouracil (5-FU) and Methotrexate (MTX) through Random Copolymeric Nanomicelles of PLGA and Polyethylenimine Demonstrating Enhanced Cell Uptake and Cytotoxicity[J]. Colloids Surf. B: Biointerfaces, 2014, 122: 520-528.

[9]

Aryal S, Hu C M J, Zhang L. Combinatorial Drug Conjugation Enables Nanoparticle Dual-drug Delivery[J]. Small, 2010, 6: 1442-1448.

[10]

Singh A, Dilnawaz F, Mewar S, et al. Composite Polymeric Magnetic Nanoparticles for Co-delivery of Hydrophobic and Hydrophilic Anticancer Drugs and MRI Imaging for Cancer Therapy[J]. Appl. Mater. Interfaces, 2011, 3: 842-856.

[11]

Liu Q, Zhang J, Sun W, et al. Delivering Hydrophilic and Hydrophobic Chemotherapeutics Simultaneously by Magnetic Mesoporous Silica Nanoparticles to Inhibit Cancer Cells[J]. Int. J. Nanomed., 2012, 7: 999-1013.

[12]

Tada D B, Singh S, Nagesha D, et al. Chitosan Film Containing Poly (D, L-lactic-co-glycolic acid) Nanoparticles: A Platform for Localized Dual-drug Release[J]. Pharm. Res., 2010, 27(8): 1738-1745.

[13]

Calabro F, Lorusso V, Rosati G, et al. Gemcitabine and Paclitaxel Every 2 Weeks in Patients with Previously Untreated Urothelial Carcinoma[J]. Cancer, 2009, 115(12): 2652-2659.

[14]

Chen Z, Pierrea D, He H, et al. Adsorption Behavior of Epirubicin Hydrochloride on Carboxylated Carbon Nanotubes[J]. Int. J. Pharm., 2011, 405: 153-161.

[15]

Xiong M H, Tang L Y, Wang J. Synthesis and Properties of Diblock Copolymers of Poly (ethylene glycol) and Poly (2-methoxyethyl ethylene phosphate) for Enhanced Paclitaxel Solubility[J]. Acta Polym. Sin., 2011, 8: 853-860.

[16]

Bin X B, Chen J Z, Xue J, et al. Growth of Carbon Encapsulated Long Nickel Nanorods on Bulk Nickel Substrate[J]. J. Wuhan Univ. Technol.-Mater. Sci. Ed., 2011, 26(1): 28-32.

[17]

Lv S X, Tang Z H, Li M Q, et al. Co-delivery of Doxorubicin and Paclitaxel by PEG-polypeptide Nanovehicle for the Treatment of Nonsmall Cell Lung Cancer [J]. Biomaterials, 2014, 35(23): 6118-6129.

[18]

Liu Z, Sun X, Nakayama-Ratchford N, et al. Supramolecular Chemistry on Water-soluble Carbon Nanotubes for Drug Loading and Delivery[J]. ACS Nano., 2007, 1: 50-56.

[19]

Xiao D L, Dramou P, He H, et al. Magnetic Carbon Nanotubes: Synthesis by a Simple Solvothermal Process and Application in Magnetic Targeted Drug Delivery System[J]. J. Nanopart. Res., 2012, 14: 984-996.

[20]

Shi D, Cheng J P, Liu F, et al. Controlling the Size and Size Distribution of Magnetite Nanoparticles on Carbon Nanotubes[J]. J. Alloy. Compd., 2010, 502: 365-370.

[21]

Cui S, Shen X D, Lin B L, et al. Surface Organic Modification of Fe3O4 Magnetic Nanoparticles[J]. J. Wuhan Univ. Technol.-Mater. Sci. Ed., 2008, 23(4): 436-439.

[22]

Chen Z, Pierre D, He H. Adsorption Behavior of Epirubicin Hydrochloride on Carboxylated Carbon Nanotubes[J]. Int. J. Pharmaceut., 2011, 405: 153-161.

[23]

Alipour S, Montaseri H, Tafaghodi M. Preparation and Characterization of Biodegradable Paclitaxel Loaded Alginate Microparticles for Pulmonary Delivery[J]. Colloid. Surface. B, 2010, 81: 521-529.

[24]

Ramĺrez L P, Landfester K. Magnetic Polystyrene Nanoparticles with a High Magnetite Content Obtained by Miniemulsion Processes[J]. Macromol. Chem. Phys., 2003, 204: 22-31.

[25]

Das M, Singh R P, Datir S R. Surface Chemistry Dependent “Switch” Regulates the Trafficking and Therapeutic Performance of Drug-loaded Carbon Nanotubes[J]. Bioconjugate Chem., 2013, 24: 626-639.

AI Summary AI Mindmap
PDF

103

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/