Preparation of cerium doped Cu/MIL-53(Al) catalyst and its catalytic activity in CO oxidation reaction

Haiyan Tan , Yin Zhou , Yunfan Yan , Weibing Hu , Xinyu Shi , Zhidou Tan , Li Tian , Yin Zheng

Journal of Wuhan University of Technology Materials Science Edition ›› 2017, Vol. 32 ›› Issue (1) : 23 -28.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2017, Vol. 32 ›› Issue (1) : 23 -28. DOI: 10.1007/s11595-017-1551-8
Advanced Materials

Preparation of cerium doped Cu/MIL-53(Al) catalyst and its catalytic activity in CO oxidation reaction

Author information +
History +
PDF

Abstract

Metal-organic framework (MOF) material MIL-53(Al) with high thermal stability was prepared by a solvothermal method, serving as a support material of cerium doped copper catalyst (Ce-Cu)/MIL-53(Al) material for CO oxidation with high catalytic activity. The catalytic performance between the (Cu-Ce)/MIL-53(Al) and the Cu/MIL-53(Al) catalytic material was compared to understand the catalytic behavior of the catalysts. The catalysts were characterized by thermogravimetric-differential scanning calorimetry (TG-DSC), N2 adsorption- desorption, X-ray diffraction (XRD), and transmission electron microscopy (TEM). The characterization results showed that MIL-53(Al) had good stability and high surface areas, the (Ce-Cu) nanoparticles on the MIL-53(Al) support was uniform. Therefore, the heterogeneous catalytic composite materials (Ce-Cu)/MIL-53(Al) catalyst exhibited much higher activity than that of the Cu/MIL- 53(Al) catalyst in CO oxidation test, with 100% conversion at 80 °C. The results reveal that (Cu-Ce)/MIL- 53(Al) is the suitable candidate for achieving low temperature and higher activity CO oxidation catalyst of MOFs.

Keywords

metal-organic framework / solvothermal synthesis / MIL-53(Al) / cerium doped copper catalyst / CO catalytic oxidation

Cite this article

Download citation ▾
Haiyan Tan, Yin Zhou, Yunfan Yan, Weibing Hu, Xinyu Shi, Zhidou Tan, Li Tian, Yin Zheng. Preparation of cerium doped Cu/MIL-53(Al) catalyst and its catalytic activity in CO oxidation reaction. Journal of Wuhan University of Technology Materials Science Edition, 2017, 32(1): 23-28 DOI:10.1007/s11595-017-1551-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Tan H Y, Wu J P. Performance of a Metal-organic Framework MIL-53(Al)-Supported Cobalt Catalyst in the CO Catalytic Oxidation Reaction[J]. Acta Phys.-Chim. Sin., 2014, 30: 715-722.

[2]

Jiang H L, Liu B, Akita T, et al. Au@ ZIF-8: CO Oxidation over Gold Nanoparticles Deposited to Metal-organic Framework[J]. J. Am. Chem. Soc., 2009, 131: 11302-11303.

[3]

Liang Q, Zhao Z, Liu J, et al. Pd Nanoparticles Deposited on Metal-organic Framework of MIL-53(Al): an Active Catalyst for CO Oxidation[J]. Acta Phys.-Chim. Sin., 2014, 30: 129-134.

[4]

Zhao X, Xiao B, Fletcher A J, et al. Hysteretic Adsorption and Desorption of Hydrogen by Nanoporous Metal-organic Frameworks[J]. Science, 2004, 306: 1012-1015.

[5]

Chae H K, Siberio-Pérez D Y, Kim J, et al. A Route to High Surface Area, Porosity and Inclusion of Large Molecules in Crystals[J]. Nature, 2004, 427: 523-527.

[6]

Feng P, Bu X, Stucky G D. Hydrothermal Syntheses and Structural Characterization of Zeolite Analogue Compounds Based on Cobalt Phosphate[J]. Nature, 1997, 388: 735-741.

[7]

Lu Y, Tonigold M, Bredenkötter B, et al. A Cobalt (II)-containing Metal-organic Framework Showing Catalytic Activity in Oxidation Reactions[J]. Z. Anorg. Allg. Chem., 2008, 634: 2411-2417.

[8]

Jiang D, Mallat T, Meier D M, et al. Copper Metal-organic Framework: Structure and Activity in the Allylic Oxidation of Cyclohexene with Molecular Oxygen[J]. J. Cater., 2010, 270: 26-33.

[9]

Schlichte K, Kratzke T, Kaskel S. Improved Synthesis, Thermal Stability and Catalytic Properties of the Metal-organic Framework Compound Cu3(BTC)2[J]. Mirpopor. Mesopor. Mat., 2004, 73: 81-88.

[10]

Huang Y, Liu S, Lin Z, et al. Facile Synthesis of Palladium Nanoparticles Encapsulated in Amine-functionalized Mesoporous Metal-organic Frameworks and Catalytic for Dehalogenation of Aryl Chlorides[J]. J. Cater., 2012, 292: 111-117.

[11]

Yaghi O, Li H, Groy T. Construction of Porous Solids from Hydrogen-bonded Metal Complexes of 1, 3, 5-benzenetricarboxylic Acid[J]. J. Am. Chem. Soc., 1996, 118(38): 9096-9101.

[12]

Jiang D, Mallat T, Krumeich F, et al. Polymer-assisted Synthesis of Nanocrystalline Copper-based Metal-organic Framework for Amine Oxidation[J]. Catal. Commun., 2011, 12: 602-605.

[13]

Ishida T, Nagaoka M, Akita T, et al. Deposition of Gold Clusters on Porous Coordination Polymers by Solid Grinding and Their Catalytic Activity in Aerobic Oxidation of Alcohols[J]. Chem. Eur. J., 2008, 14: 8456-8460.

[14]

Brown K, Zolezzi S, Aguirre P, et al. [Cu (H btec)(bipy)]∞: a Novel Metal Organic Framework (MOF) as Heterogeneous Catalyst for the Oxidation of Olefins[J]. Dalton Trans., 2009, 10: 1422-1427.

[15]

Tonigold M, Lu Y, Bredenkötter B, et al. Heterogeneous Catalytic Oxidation by MFU-1: A Cobalt (II)-containing Metal-organic Framework[J]. Angew Chem. Int. Ed., 2009, 48: 7546-7550.

[16]

Marx S, Kleist W, Baiker A. Synthesis, Structural Properties, and Catalytic Behavior of Cu-BTC and Mixed-linker Cu-BTC-PyDC in the Oxidation of Benzene Derivatives[J]. J. Cater., 2011, 281: 76-87.

[17]

Sun C Y, Liu S X, Liang D D, et al. Highly Stable Crystalline Catalysts Based on a Microporous Metal-organic Framework and Polyoxometalates[J]. J. Am. Chem. Soc., 2009, 131: 1883-1888.

[18]

Wee L H, Bajpe S R, Janssens N, et al. Convenient Synthesis of Cu3(BTC)2 Encapsulated Keggin Heteropolyacid Nanomaterial for Application in Catalysis[J]. Chem. Commun., 2010, 46: 8186-8188.

[19]

Qiu W G, Wang Y, Li C Q, et al. Effect of Activation Temperature on Catalytic Performance of CuBTC for CO Oxidation[J]. Chin. J. Catal., 2012, 33: 986-992.

[20]

Tan Z D, Tan H Y, Shi X Y, et al. Metal-organic Framework MIL-53 (Al)-supported Copper Catalyst for CO Catalytic Oxidation Reaction[J]. Inorg Chem. Commun., 2015, 61: 128-131.

[21]

Kuo C H, Li W, Song W, et al. Facile Synthesis of Co3O4@ CNT with High Catalytic Activity for CO Oxidation under Moisture-rich Conditions[J]. ACS Appl. Mater. Inter., 2014, 6: 11311-11317.

[22]

Lou Y, Cao X M, Lan J, et al. Ultralow-temperature CO oxidation on an In2O3-Co3O4 Catalyst: a Strategy to Tune CO Adsorption Strength and Oxygen Activation Simultaneously[J]. Chem. Commun., 2014, 50: 6835-6838.

[23]

Song W, Poyraz A S, Meng Y, et al. Mesoporous Co3O4 with Controlled Porosity: Inverse Micelle Synthesis and High-Performance Catalytic CO Oxidation at-60 °C [J]. Chem. Mater., 2014, 26: 4629-4639.

[24]

Xiao J, Wan L, Wang X, et al. Mesoporous Mn3O4-CoO Core-shell Spheres Wrapped by Carbon Nanotubes: a High Performance Catalyst for the Oxygen Reduction Reaction and CO Oxidation[J]. J. Mater. Chem. A, 2014, 2: 3794-3800.

[25]

Díaz A A, Cecilia J, Santos L D, et al. Characterization and Performance in Preferential Oxidation of CO of CuO-CeO2 Catalysts Synthesized using Polymethyl Metacrylate (PMMA) as Template[J]. Int. J. Hydrogen Energ, 2015, 40: 11254-11260.

[26]

Zeng S H, Zhang W L, Śliwa M, et al. Comparative Study of CeO2/CuO and CuO/CeO2 Catalysts on Catalytic Performance for Preferential CO Oxidation[J]. Int. J. Hydrogen Energ., 2013, 38: 3597-3605.

[27]

Baneshi J, Haghighi M, Jodeiri N, et al. Homogeneous Precipitation Synthesis of CuO-ZrO2-CeO2-Al2O3 Nanocatalyst used in Hydrogen Production via Methanol Steam Reforming for Fuel Cell Applications[J]. Energy Convers. Manage., 2014, 87: 928-937.

[28]

Qi L, Yu Q, Dai Y, et al. Influence of Cerium Precursors on the Structure and Reducibility of Mesoporous CuO-CeO2 Catalysts for CO Oxidation[J]. Appl. Catal. B., 2012, 119: 308-320.

[29]

Reyes-Carmona Arango-Díaz A, Moretti E, et al. CuO/CeO2 Supported on Zr doped SBA-15 as Catalysts for Preferential CO Oxidation (CO-PROX)[J]. J. Power Sources, 2011, 196: 4382-4387.

[30]

Tang C, Sun J, Yao X, et al. Efficient Fabrication of Active CuO-CeO2/SBA-15 Catalysts for Preferential Oxidation of CO by Solid State Impregnation[J]. Appl. Catal. B, 2014, 146: 201-212.

[31]

Ye J Y, Liu C J. Cu3(BTC)2: CO Oxidation over MOF Based Catalysts[J]. Chem. Commun., 2011, 47: 2167-2169.

[32]

Tan H Y, Liu C, Yan Y F. Simple Preparation of Crystal Co3(BTC)2·12H2O and Its Catalytic Activity in CO Oxidation Reaction[J]. J. Wuhan University of Technology-Mater. Sci. Ed., 2015, 30: 71-75.

[33]

Li T Y, Xiang G L, Zhuang J, et al. Enhanced Catalytic Performance of Assembled Ceria Necklace Nanowires by Ni Doping[J]. Chem. Commun., 2011, 47: 6060-6061.

[34]

Yu Q, Wu X X, Tang C J, et al. Textural, Structural, and Morphological Characterizations and Catalytic Activity of Nanosized CeO2-MOx (M= Mg2+, Al3+, Si4+) Mixed Oxides for CO Oxidation[J]. J. Colloid Interface Sci., 2011, 354: 341-352.

AI Summary AI Mindmap
PDF

118

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/