Electronic structure and transport coefficients of the thermoelectric materials Bi2Te3 from first-principles calculations

Xinxin Yan , Wenwen Zheng , Fengming Liu , Shuhua Yang

Journal of Wuhan University of Technology Materials Science Edition ›› 2017, Vol. 32 ›› Issue (1) : 11 -15.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2017, Vol. 32 ›› Issue (1) : 11 -15. DOI: 10.1007/s11595-017-1548-3
Advanced Materials

Electronic structure and transport coefficients of the thermoelectric materials Bi2Te3 from first-principles calculations

Author information +
History +
PDF

Abstract

The electronic structures of bulk Bi2Te3 crystals were investigated by the first-principles calculations. The transport coefficients including Seeback coefficient and power factor were then calculated by the Boltzmann theory, and further evaluated as a function of chemical potential assuming a rigid band picture. The results suggest that p-type doping in the Bi2Te3 compound may be more favorable than n-type doping. From this analysis results, doping effects on a material will exhibit high ZT. Furthermore, we can also find the right doping concentration to produce more efficient materials, and present the “advantage filling element map” in detail.

Keywords

thermoelectric / Bi2Te3 / first-principles calculations / electronic structure / transport coefficients

Cite this article

Download citation ▾
Xinxin Yan, Wenwen Zheng, Fengming Liu, Shuhua Yang. Electronic structure and transport coefficients of the thermoelectric materials Bi2Te3 from first-principles calculations. Journal of Wuhan University of Technology Materials Science Edition, 2017, 32(1): 11-15 DOI:10.1007/s11595-017-1548-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

DiSalvo F J. Thermoelectric Cooling and Power Generation[J]. Science, 1999, 285(5428): 703-706.

[2]

Chen G, Dresselhaus M S, Dresselhaus G, et al. Recent Developments in Thermoelectric Materials[J]. International Materials Reviews, 2003, 48(1): 45-66.

[3]

Kim S, Lee K, Mun H A, et al. Dense Dislocation Arrays Embedded in Grain Boundaries for High-performance Bulk Thermoelectrics[J]. Science, 2015, 348(6230): 109-114.

[4]

Lin Y M, Sun X, Dresselhaus M S. Theoretical Investigation of Thermoelectric Transport Properties of Cylindrical Bi Nanowires[J]. Physical Review B, 2000, 62(7): 4610-4623.

[5]

Broido D A, Reinecke T L. Theory of Thermoelectric Power Factor in Quantum Well and Quantum Wire Superlattices[J]. Physical Review B, 2001, 64(4): 045324-1.

[6]

Balandin A A, Lazarenkova O L. Mechanism for Thermoelectric Figure-of-merit Enhancement in Regimented Quantum Dot Superlattices[J]. Applied Physics Letters, 2003, 82(3): 415-417.

[7]

Toprak M S, Stiewe C, Platzek D, et al. The Impact of Nanostructuring on the Thermal Conductivity of Thermoelectric CoSb3[J]. Advanced Functional Materials, 2004, 14(12): 1189-1196.

[8]

Zhai P C, Zhao W Y, Li Y, et al. Nanostructures and Enhanced Thermoelectric Properties in Ce-filled Skutterudite Bulk Materials[J]. Applied Physics Letters, 2006, 89(5): 052111-1.

[9]

He Z M, Stiewe C, Platzek D, et al. Thermoelectric Properties of Hotpressed Skutterudite CoSb3[J]. Journal of Applied Physics, 2007, 101(5): 053713-1.

[10]

Hsu K F, Loo S, Guo F, et al. Cubic AgPbmSbTe2+m: Bulk Thermoelectric Materials with High Figure of Merit[J]. Science, 2004, 303(5659): 818-821.

[11]

Androulakis J, Hsu K F, Pcionek R, et al. Nanostructuring and High Thermoelectric Efficiency in P-Type Ag(Pb1?–?ySny)mSbTe2?+?m [J]. Advanced Materials, 2006, 18(9): 1170-1173.

[12]

Lan Y, Minnich A J, Chen G, et al. Enhancement of Thermoelectric Figure-of-Merit by a Bulk Nanostructuring Approach[J]. Advanced Functional Materials, 2010, 20(3): 357-376.

[13]

Zhao L D, Lo S H, Zhang Y, et al. Ultralow Thermal Conductivity and High Thermoelectric Figure of Merit in SnSe Crystals[J]. Nature, 2014, 508(7496): 373-377.

[14]

Balow R B, Tomlinson E P, Abu-Omar M M, et al. Solution-based Synthesis and Characterization of Earth Abundant Cu3(As,Sb)Se4 Nanocrystal Alloys: Towards Scalable Room-temperature Thermoelectric Devices[J]. Journal of Materials Chemistry A, 2016, 4(6): 2198-2204.

[15]

Biswas K, He J, Blum I D, et al. High-performance Bulk Thermoelectrics with All-scale Hierarchical Architectures[J]. Nature, 2012, 489(7416): 414-418.

[16]

Liang N, Zai J, Xu M, et al. Novel Bi2S3/Bi2O2CO3 Heterojunction Photocatalysts with Enhanced Visible Light Responsive Activity and Wastewater Treatment[J]. Journal of Materials Chemistry A, 2014, 2(12): 4208-4216.

[17]

Fang H, Feng T, Yang H, et al. Synthesis and Thermoelectric Properties of Compositional-Modulated Lead Telluride-Bismuth Telluride Nanowire Heterostructures[J]. Nano Letters, 2013, 13(5): 2058-2063.

[18]

Tan G, Shi F, Hao S, et al. Non-equilibrium Processing Leads to Record High Thermoelectric Figure of Merit in PbTe-SrTe[J]. Nature Communications, 2016, 7: 12167-1.

[19]

Saleemi M, Toprak M S, Li S, et al. Synthesis, Processing, and Thermoelectric Properties of Bulk Nanostructured Bismuth Telluride (Bi2Te3) [J]. Journal of Materials Chemistry, 2012, 22(2): 725-730.

[20]

Zhao L D, Wu H J, Hao S Q, et al. All-scale Hierarchical Thermoelectrics: MgTe in PbTe Facilitates Valence Band Convergence and Suppresses Bipolar Thermal Transport for High Performance[J]. Energy & Environmental Science, 2013, 6(11): 3346-3355.

[21]

Liu W, Tan X, Yin K, et al. Convergence of Conduction Bands as a Means of Enhancing Thermoelectric Performance of N-type Mg2Si1-xSnx Solid Solutions[J]. Physical Review Letters, 2012, 108(16): 166601-1.

[22]

Scheidemantel T J, Ambrosch-Draxl C, Thonhauser T, et al. Transport Coefficients from First-principles Calculations[J]. Physical Review B, 2003, 68(12): 125210-1.

[23]

Wang G F, Cagin T. Electronic Structure of the Thermoelectric Materials Bi2Te3 and Sb2Te3 From First-principles Calculations[J]. Physical Review B, 2007, 76(7): 075201-1.

[24]

Madsen G K H, Singh D J, Boltz T P C. A Code for Calculating Bandstructure Dependent Quantities[J]. Computer Physics Communications, 2006, 175(7): 67-71.

[25]

Blaha P, Schwarz K, Madsen G K H, et al. An Augmented Planewave Plus Local Orbitals Program for Calculating Crystal Properties[OL]. 2002 Austria: Technische Universitat Wien.

[26]

Blochl P E. Projector Augmented-Wave Method[J]. Physical Review B, 1994, 50(24): 17953-17979.

[27]

Perdew J P, Burke K, Ernzerhof M. Generalized Gradient Approximation Made Simple[J]. Physical Review Letters, 1996, 77(18): 3865-3868.

[28]

Holland M G. Analysis of Lattice Thermal Conductivity[J]. Physical Review, 1963, 132(6): 2461-2471.

[29]

Mǿllnitz L, Blake N P, Metiu H. Effects of Morphology on the Electronic and Transport Properties of Sn-based Clathrates[J]. The Journal of Chemical Physics, 2002, 117(3): 1302-1312.

[30]

Thonhauser T, Scheidemantel T J, Sofo J O. Improved Thermoelectric Devices Using Bismuth Alloys[J]. Applied Physics Letters, 2004, 85(4): 588-590.

[31]

Blaha P, Schwarz K, Madsen G K H, et al. An Augmented Plane Wave+Local Orbitals Program for Calculating Crystal Properties[CP]. 2001 Austria: Karlheinz Schwarz, Technische Uniersitat Wien.

[32]

Larson P, Mahanti S D, Kanatzidis M G. Electronic Structure and Transport of Bi2Te3 and BaBiTe3[J]. Physical Review B, 2000, 61(12): 8162-8171.

[33]

Youn S J, Freeman A J. First-principles Electronic Structure and Its Relation to Thermoelectric Properties of Bi2Te3[J]. Physical Review B, 2001, 63(8): 085112-1.

[34]

Kim M, Freeman A J, Geller C B. Screened Exchange LDA Determination of the Ground and Excited State Properties of Thermoelectrics: Bi2Te3[J]. Physical Review B, 2005, 72(3): 035205-1.

[35]

Hohl H, Ramirez A P, Goldmann C, et al. New Compounds with MgAgAs-type Structure: NbIrSn and NbIrSb[J]. Journal of Physics: Condensed Matter, 1998, 10(35): 7843-7850.

[36]

Tobolay J, Pierrez J, Kaprzyky S, et al. Crossover from Semiconductor to Magnetic Metal in Semi-Heusler Phases as a Function of Valence Electron Concentration[J]. Journal of Physics: Condensed Matter, 1998, 10(5): 1013

AI Summary AI Mindmap
PDF

106

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/