Microwave synthesis of CdTe/TGA quantum dots and their thermodynamic interaction with bovine serum albumin

Ling Ding , Zeze Peng , Weizhou Shen , Tao Liu , Zhengzai Cheng , Mario Gauthier , Feng Liang

Journal of Wuhan University of Technology Materials Science Edition ›› 2016, Vol. 31 ›› Issue (6) : 1408 -1414.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2016, Vol. 31 ›› Issue (6) : 1408 -1414. DOI: 10.1007/s11595-016-1546-x
Biomaterials

Microwave synthesis of CdTe/TGA quantum dots and their thermodynamic interaction with bovine serum albumin

Author information +
History +
PDF

Abstract

The thioglycollic acid (TGA) as a capping agent, CdTe/TGA quantum dots (QDs) with excellent properties were synthesized under microwave irradiation. The TGA/Cd/Te molar ratios, reaction time, temperature and pH are the crucial factors for properties of QDs. The QDs were characterized by UV-vis absorption and fluorescence spectra, transmission electron microscopy and Fourier transform infrared spectroscopy. The experimental results show that when the pH value is 11.5 and molar ratio of TGA:Cd:Te is 1.2:1:0.4 at 100 °C heating for 15 min, the resulted QDs exhibit a high fluorescence quantum yield of 78%. The fluorescence full width at half maximum (FHMW) of QDs is around 23 nm. The products are spherical with average size of 3-5 nm. There is a strong coordination effect between TGA and Cd2+. Moreover, the results of interaction between as-made QDs and bovine serum albumin (BSA) suggest that the QDs-BSA binding reaction is a static quenching. The negative values of free energy (△G<0) suggest that the binding process is spontaneous, △H<0 and △S<0 show that hydrogen bonds and van der Waals interactions play a major role in the binding reaction between QDs and BSA.

Keywords

microwave synthesis / CdTe/TGA quantum dots / bovine serum albumin / interaction / thermodynamics

Cite this article

Download citation ▾
Ling Ding, Zeze Peng, Weizhou Shen, Tao Liu, Zhengzai Cheng, Mario Gauthier, Feng Liang. Microwave synthesis of CdTe/TGA quantum dots and their thermodynamic interaction with bovine serum albumin. Journal of Wuhan University of Technology Materials Science Edition, 2016, 31(6): 1408-1414 DOI:10.1007/s11595-016-1546-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Alivisatos AP. Perspectives on the Physical Chemistry of Semiconductor Nanocrystals[J]. J. Phys. Chem., 1996, 100(31): 13226-13239.

[2]

Chan WCW, Nie SM. Quantum Dot Bioconjugates for Ultrasensitive Nonisotopic Detection[J]. Science, 1998, 281: 2016-2018.

[3]

Ghali M. Static quenching of Bovine Serum Albumin Conjugated with Small Size CdS Nanocrystalline Quantum Dots[J]. J. Lumin., 2010, 130: 1254-1257.

[4]

Behboudnia M, Azizianekalandaragh Y. Synthesis and Characterization of CdSe Semiconductor Nanoparticles by Ultrasonic Irradiation[J]. Mat. Sci. Eng. B, 2007, 138: 65-68.

[5]

EI-Nahass MM, Youssef GM, Sohaila ZN. Structural and Optical Characterization of CdTe Quantum Dots Thin Films[J]. J. Alloy Compounds, 2014, 604: 253-259.

[6]

Tang GC, Du LP, Su XG. Detection of Melamine Based on the Fluorescence Resonance Energy Transfer between CdTe QDs and Rhodamine B[J]. Food Chem., 2013, 141: 4060-4065.

[7]

Dai XL, Zhang ZX, Jin YZ, et al. Solution-processed, High-performance Light-emitting Diodes Based on Quantum Dots[J]. Nature, 2014, 515: 96-99.

[8]

Nguyen KC, Willmore WG, Tayabali AF. Cadmium Telluride Quantum Dots Cause Oxidative Stress Leading to Extrinsic and Intrinsic Apoptosis in Hepatocellular Carcinoma HepG2 Cells[J]. Toxicology, 2013, 306: 114-123.

[9]

Liu YX, Wang P, Wang Y, et al. The Influence on Cell Cycle and Cell Division by Various Cadmium-containing Quantum Dots[J]. Small, 2013, 9: 2440-2451.

[10]

Peng ZA, Peng XG. Formation of High-quality CdTe, CdSe and CdS Nanocrystals Using CdO as Precursor[J]. J. Am. Chem. Soc., 2001, 123: 183-184.

[11]

He Y, Lu HT, Sai LM, et al. Microwave-assisted Growth and Characterization of Water-dispersed CdTe/CdS Core-shell Nanocrystals with High Photoluminescence[J]. J. Phys. Chem. B, 2006 13370-13374.

[12]

He Y, Sai LM, Lu HT. Microwave-assisted Synthesis of Water-dispersed CdTe Nanocrystals with High Luminescent Efficiency and Narrow Size Distribution[J]. Chem. Mater., 2007, 19: 359-365.

[13]

Rogach AL, Franzl T, Klar TA, et al. Aqueous Synthesis of Thiol-Capped CdTe Nanocrystals: State-of-the-Art[J]. J. Phys. Chem. C, 2007, 111: 14628-14637.

[14]

Chao MR, Chang YZ, Chen JL. Hydrophilic Ionic Liquid-passivated CdTe Quantum Dots for Mercury Ion Detection[J]. Biosens. Bioelectron, 2013, 42: 397-402.

[15]

Taniguchi S, Green M, Rizvi SB, et al. The One Pot Synthesis of Core/Shell/Shell CdTe/CdSe/ZnSe Quantum Dots in Aqueous Media for in Vivo Deep Tissue Imaging[J]. J. Mater. Chem., 2011, 21: 2877-2882.

[16]

Lin ZB, Cui SX, Zhang H, et al. Studies on Quantum Dots Synthesized in Aqueous Solution for Biological Labeling Via Electrostatic Interaction[J]. Anal. Biochem., 2003, 319(2): 239-243.

[17]

Li L, Qian HF, Ren JC. Rapid Synthesis of Highly Luminescent CdTe Nanocrystals in the Aqueous Phase by Microwave Irradiation with Controllable Temperature[J]. Chem. Commun., 2005 529-530.

[18]

Rodrigues SSM, Ribeiro DSM, Molina-Garcia L, et al. Fluorescence Enhancement of CdTe MPA-capped Quantum Dots by Glutathione for Hydrogen Peroxide Determination[J]. Talanta, 2014, 122: 157-165.

[19]

Rodrigues SSM, Prieto DR, Ribeiro DSM, et al. Competitive Metalligand Binding between CdTe Quantum Dots and EDTA for Free Ca2+ Determination[J]. Talanta, 2015, 134: 173-182.

[20]

Chen HZ, Gong Y, Han R. Cadmium Telluride Quantum Dots (CdTe-QDs) and Enhanced Ultraviolet-B (UV-B) Radiation Trigger Antioxidant Enzyme Metabolism and Programmed Cell Death in Wheat Seedlings[J]. PLoS One, 2014, 9: e110400.

[21]

Wang Q, Ye F, Fang T, et al. Bovine Serum Albumin-directed Synthesis of Biocompatible CdSe Quantum Dots and Bacteria Labeling[J]. J. Colloid Interf. Sci., 2011, 355: 9-14.

[22]

Zhang Y, Li JH, Ge YS, et al. Biophysical Studies on the Interactions of a Classic Mitochondrial Uncoupler with Bovine Serum Albumin by Spectroscopic, Isothermal Titration Calorimetric and Molecular Modeling Methods[J]. J. Fluoresc., 2011, 21: 475-485.

[23]

Wurth C, Grabolle M, Pauli J, et al. Comparison of Methods and Achievable Uncertainties for the Relative and Absolute Measurement of Photoluminescence Quantum Yields[J]. Anal. Chem., 2011, 83(9): 3431-3439.

[24]

Gattas-Asfura MK, Leblanc RM. Peptide-coated CdS Quantum Dots for the Optical Detection of Copper(II) and Silver(I) [J]. Chem. Commun., 2003, 21: 2684-2685.

[25]

Sai LM, Lu HT, He Y, et al. Microwave-assisted Growth and Characterizations of Water-dispersed Glutathione-capped ZnSe Nanocrystals[J]. J. Funct. Mater. Devices, 2009, 15: 53-60.

[26]

Liu P, Wang QS, Li X. Studies on CdSe/l-cysteine Quantum Dots Synthesized in Aqueous Solution for Biological Labeling[J]. J. Phys. Chem. C, 2009, 113: 7670-7676.

[27]

Kho R, Torres-Mart´ınez CL, Mehra RK. A Simple Colloidal Synthesis for Gram-Quantity Production of Water-Soluble ZnS Nanocrystal Powders[J]. J. Colloid Interf. Sci., 2000, 227: 561-566.

[28]

Burda C, Chen X, Narayanan R, et al. Chemistry and Properties of Nanocrystals of Different Shapes[J]. Chem. Rev., 2005, 105: 1025-1102.

[29]

Li CL, Nishikawa K, Ando M, et al. Highly Luminescent Water-soluble ZnSe Nanocrystals and Their Incorporation in a Glass Matrix[J]. Colloid Surf. A: Physicochem. Eng. Asp., 2007, 294: 33-39.

[30]

Lakowicz JR. Principles of Fluorescence Spectroscopy[M], 2006 3 New York: Springer. 1-21.

[31]

Ding L, Zhou PJ, Li SQ, et al. Spectroscopic Studies on the Thermodynamics of L-Cysteine Capped CdSe/CdS Quantum Dots-BSA Interactions[J]. J. Fluoresc., 2011, 21: 17-24.

[32]

Leckband D. Measuring the Forces That Control Protein Interactions[J]. Annu. Rev. Biophys. Biomol. Struct., 2000, 29: 1-26.

[33]

De M, You CC, Srivastava S, et al. Biomimetic Interactions of Proteins with Functionalized Nanoparticles: a Thermodynamic Study[J]. J. Am. Chem. Soc., 2007, 129: 10747-10753.

[34]

Yamasaki K, Maruyama T, Takadate A, et al. Characterization of Site I of Human Serum Albumin Using Spectroscopic Analyses: Locational Relations between Regions Ib and Ic of Site I[J]. J Pharm. Sci., 2004, 93: 3004-3012.

[35]

Ross PD, Subramanian S. Thermodynamics of Protein Association Reactions: Forces Contributing to Stability[J]. Biochem., 1981, 20: 3096-3102.

[36]

Yamasaki K, Maruyama T, Kragh-Hansen U, et al. Characterization of Site I on Human Serum Albumin: Concept about the Structure of a Drug Binding Site[J]. Biochimica et Biophysica Acta (BBA) -Protein Struct. M., 1996, 1295: 147-157.

AI Summary AI Mindmap
PDF

97

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/