In vitro evaluation of effects of Mg-6Zn alloy extracts on apoptosis of intestinal epithelial cells

Xiaohu Wang , Yigang Chen , Song Yu , Zhigang Wang , Xiaonong Zhang , Changli Zhao , Shaoxiang Zhang , Jun Yan , Baojun Gu

Journal of Wuhan University of Technology Materials Science Edition ›› 2016, Vol. 31 ›› Issue (6) : 1387 -1393.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2016, Vol. 31 ›› Issue (6) : 1387 -1393. DOI: 10.1007/s11595-016-1543-0
Biomaterials

In vitro evaluation of effects of Mg-6Zn alloy extracts on apoptosis of intestinal epithelial cells

Author information +
History +
PDF

Abstract

We assessed the in vitro cytotoxicity of Mg-6Zn alloy and analyzed the cell apoptosis rate and the expression of caspase-3 to evaluate the effects of Mg-6Zn alloy extracts on apoptosis of intestinal epithelial cells (IEC)-6. IEC-6 cells were cultured in different concentrations of Mg-6Zn alloy extracts (40%, 20%) and in the control group. The indirect effects of Mg-6Zn alloy on IEC-6 cells were studied by calculating the cell relative growth rate (RGR), measuring the apoptosis of IEC-6 cells through flow cytometry, and investigating the expression of caspase-3 using real-time polymerase chain reaction. The experimental results show that the cytotoxicity of these extracts is Grade 0-1. The level of apoptosis in IEC-6 cells cultured in 40% Mg-6Zn alloy extracts is significantly higher than that in cells treated with 20% extract and the control group. The expression of caspase-3 is found to be up-regulated in the 40% extract as compared to 20% extract and the control group. Taken together, the data show that the Mg-6Zn alloy in 40% and 20% concentration extracts proves noncytotoxicity. But the 40% con-centration of Mg-6Zn alloy extract can induce the apoptosis and the related caspase-3 expression in vitro.

Keywords

Mg-6Zn alloy / intestinal epithelial cell / apoptosis

Cite this article

Download citation ▾
Xiaohu Wang, Yigang Chen, Song Yu, Zhigang Wang, Xiaonong Zhang, Changli Zhao, Shaoxiang Zhang, Jun Yan, Baojun Gu. In vitro evaluation of effects of Mg-6Zn alloy extracts on apoptosis of intestinal epithelial cells. Journal of Wuhan University of Technology Materials Science Edition, 2016, 31(6): 1387-1393 DOI:10.1007/s11595-016-1543-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Haynes DR, Rogers SD, Hay S, et al. The Differences in Toxicity and Release of Bone-resorbing Mediators Induced by Titanium and Cobaltchromium-alloy Wear Particles[J]. J. Bone. Joint. Surg. Am., 1993, 75(6): 825-834.

[2]

Galante JO, Lemons J, Spector M, et al. The Biologic Effects of Implant Materials[J]. J. Orthop. Res., 1991, 9(5): 760-75.

[3]

Coen N, Kadhim MA, Wright EG, et al. Particulate Debris from a Titanium Metal Prosthesis Induces Genomic Instability in Primary Human Fibroblast Cells[J]. Br. J. Cancer., 2003, 88(4): 548-552.

[4]

Suska F, Esposito M, Gretzer C, et al. IL-1α, IL-1β and TNF-α Secretion During in Vivo/Ex vivo Cellular Interactions with Titanium and Copper[J]. Biomaterials, 2003, 24(3): 461-468.

[5]

Witte F, Kaese V, Haferkamp H, et al. In Vivo Corrosion of Four Magnesium Alloys and the Associated Bone Response[J]. Biomaterials, 2005, 26(17): 3557-3563.

[6]

Witte F, Fischer J, Nellesen J, et al. In Vitro and in Vivo Corrosion Measurements of Magnesium Alloys[J]. Biomaterials, 2006, 27(7): 1013-1018.

[7]

Xu L, Yu G, Zhang E, et al. In Vivo Corrosion Behavior of Mg-Mn-Zn Alloy for Bone Implant Application[J]. J. Biomed. Mater. Res. A, 2007, 83A(3): 703-711.

[8]

Chao DT, Korsmeyer SJ. BCL-2 FAMILY: Regulators of Cell Death Article[J]. Annu. Rev. Immunol., 1998, 16(1): 395

[9]

Wood SR, Zhao Q, Smith LH, et al. Altered Morphology in Cultured Rat Intestinal Epithelial IEC-6 Cells is Associated with Alkaline Phosphatase Expression[J]. Tissue. Cell., 2003, 35(1): 47-58.

[10]

Gu X, Zheng Y, Cheng Y, et al. In Vitro Corrosion and Biocompatibility of Binary Magnesium Alloys[J]. Biomaterials, 2009, 30(4): 484-98.

[11]

Zhang SX, Zhang XN, Zhao CL, et al. Research on an Mg-Zn Alloy as a Degradable Biomaterial[J]. Acta. Biomater., 2010, 6(2): 626-640.

[12]

Yan J, Chen YG, Yuan QL, et al. Comparison of the Effects of Mg-6Zn and Titanium on Intestinal Tract in Vivo[J]. J. Mater. Sci. Mater. Med., 2013, 24: 1515-1525.

[13]

Wang ZH, Yan J, Li JN, et al. Effects of Biodegradable Mg-6Zn Alloy Extracts on Apoptosis of Intestinal Epithelial Cells[J]. Mat. Sci. Eng. B, 2012, 177(4): 388-393.

[14]

Wang ZH, Yan J, Zheng Q, et al. Effects of Biodegradable Mg-6Zn Alloy Extracts on Cell Cycle of Intestinal Epithelial Cells[J]. J. Biomater. Appl., 2013, 27(6): 739-741.

[15]

Brodbeck WG, Shive MS, Colton E, et al. Influence of Biomaterial Surface Chemistry on the Apoptosis of Adherent Cells[J]. J. Biomed. Mater. Res., 2001, 55(4): 661-668.

[16]

Nicholson DW, Thornberry NA. Caspases: Killer Proteases[J]. Trends. Biochem. Sci., 1997, 22(8): 299-306.

[17]

Kerr JF, Wyllie AH, Currie AR. Apoptosis: A Basic Biological Phenomenon with Wide-ranging Implications in Tissue Kinetics[J]. Br. J. Cancer., 1972, 26(4): 239-257.

[18]

Zheng TS, Hunot S, Kuida K, et al. Caspase Knockouts: Matters of Life and death[J]. Cell. Death. Differ., 1999, 6(11): 1043-1053.

[19]

Quaroni A, Isselbacher KJ, Ruoslahti E. Fibronectin Synthesis by Epithelial Crypt Cells of Rat Small Intestine[J]. Proc. Natl. Acad. Sci. USA, 1978, 75(11): 5548-5552.

[20]

Göke M, Zuk A, Podolsky DK. Regulation and Function of Extracellular Matrix Intestinal Epithelial Restitution in Vitro[J]. Am. J. Physiol., 1996, 271: G729-740.

[21]

Santos MF, Viar MJ, McCormack SA, et al. Polyamines Are Important for Attachment of IEC-6 Cells to Extracellular Matrix[J]. Am. J. Physiol., 1997, 273: G175-183.

[22]

Hagerman EM, Chao SH, Dunn JC, et al. Surface Modification and Initial Adhesion Events for Intestinal Epithelial Cells[J]. J. Biomed. Mater. Res. A., 2006, 76(2): 272-278.

[23]

Zhang E, Yin D, Xu L, et al. Microstructure, Mechanical and Corrosion Properties and Biocompatibility of Mg-Zn-Mn Alloys for Biomedical Application[J]. Mater. Sci. Eng. C, 2009, 29: 987-993.

[24]

ANSI/AAMI. ISO 10993–5: 2009. Biological Evaluation of Medical Devices. Part 5. Tests for Cytotoxicity: in Vitro Methods. Arlington, VA: ANSI/AAMI

[25]

Yuan QL, Yan J, Zheng Q, et al. Biocompatibility of A Magnesium-zinc Alloy Implanted in Rat Cecum[J]. J. Clin. Rehabil. Tissue. Eng. Res., 2010, 42: 7966-7970.

[26]

Strowig T, Henao-Mejia J, Elinav E, et al. Inflammasomes in Health and Disease[J]. Nature., 2012, 481(7381): 278-286.

[27]

Datta D, McClendon CL, Jacobson MP, et al. Substrate and Inhibitorinduced Dimerization and Cooperativity in Caspase-1 but not Caspase-3[J]. J. Biol. Chem., 2013, 288(14): 9971-9981.

[28]

Rehm M, Dussmann H, Janicke RU, et al. Single-cell Fluorescence Resonance Energy Transfer Analysis Demonstrates that Caspase Activation During Apoptosis is A Rapid Process. Role of Caspase-3[J]. J. Biol. Chem., 2002, 277(27): 24506-24514.

[29]

Wu N, Veillette A. Immunology: Magnesium in A Signalling Role[J]. Nature, 2011, 475(7357): 462-463.

[30]

Chien MM, Zahradka KE, Newell MK, et al. Fas-induced B Cell Apoptosis Requires an Increase in Free Cytosolic Magnesium as an Early Event[J]. J. Biol. Chem., 1999, 274(11): 7059-7066.

[31]

Ho E. Zinc Deficiency, DNA Damage and Cancer Risk[J]. J. Nutr. Biochem., 2004, 15: 572-578.

[32]

Wellinghausen N, Kirchner H, Rink L. The Immunobiology of Zinc[J]. Immunol. Today, 1997, 18(11): 519-521.

[33]

Wang X, Ito A, Sogo Y, et al. Oyane, Zinc-containing Apatite Layers on External Fixation Rods Promoting Cell Activity[J]. Acta. Biomater., 2010, 6(3): 962-968.

[34]

Wang X, Li X, Ito A, et al. Synthesis and Characterization of Hierarchically Macroporous and Mesoporous CaO-MO-SiO(2)-P(2) O(5) (M=Mg, Zn, Sr) Bioactive Glass Scaffolds[J]. Acta. Biomater., 2011, 7(10): 3638-3644.

[35]

Dribben WH, Eisenman LN, Mennerick S. Magnesium Induces Neuronal Apoptosis by Suppressing Excitability[J]. Cell. Death. Dis., 2010, 1: e63.

[36]

Vairo G, Cocks BG, Cragoe EJ, et al. Selective Suppression of Growth Factor-induced Cell Cycle Gene Expression by Na+/H+ Antiport Inhibitors[J]. J. Biol. Chem., 1992, 267(27): 19043-19046.

[37]

Takeshita K, Suzuki Y, Nishio K. Hypercapnic Acidosis Attenuates Endotoxin-induced Nuclear Factor-[kappa]B Activation[J]. Am. J. Respir. Cell. Mol. Biol., 2003, 29(1): 124-132.

[38]

Wolf CM, Eastman A. Intracellular Acidification During Apoptosis Can Occur in the Absence of a Nucleus[J]. Biochemical & Biophysical. Res. Comm., 1999, 254(3): 821-827.

[39]

Rebollo A, Gomez J, Martinez A, et al. Apoptosis Induced by IL-2 Withdrawal is Associated with an Intracellular Acidification[J]. Exp. Cell. Res., 1995, 218(2): 581-585.

[40]

Laffey JG, Engelberts D, Kavanagh BP. Injurious Effects of Hypocapnic Alkalosis in the Isolated Lung[J]. Am. J. Respir. Crit. Care. Med., 2000, 162(2): 399-405.

[41]

Cutaia M, Black AD, Cohen I, et al. Alkaline Stress-induced Apoptosis in Human Pulmonary Artery Endothelial Cells[J]. Apoptosis., 2005, 10(6): 1457-1467.

[42]

Wakabayashi I, Groschner K. Divergent Effects of Extracellular and Intracellular Alkalosis on Ca2+ Entry Pathways in Vascular Endothelial Cells[J]. Biochem. J., 1997, 323(2): 567-573.

[43]

Trump BF, Berezesky IK. Calcium-mediated Cell Injury and Cell Death[J]. FASEB. J., 1995, 9(2): 219-228.

[44]

Berridge MJ, Bootman MD, Lipp P. Calcium-A Life and Death Signal[J]. Natur., 1998, 395(6703): 645-648.

[45]

Cerella C, Alessio MD, Nicola MD, et al. Cytosolic and Endoplasmic Reticulum Ca2+ Concentrations Determine the Extent and the Morphological Type of Apoptosis, Respectively[J]. Ann. NY. Acad. Sci., 2003, 1010: 74-77.

AI Summary AI Mindmap
PDF

89

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/