Structural, anisotropic and thermodynamic properties of Imm2-BCN

Mengjiang Xing , Binhua Li , Zhengtao Yu , Qi Chen

Journal of Wuhan University of Technology Materials Science Edition ›› 2016, Vol. 31 ›› Issue (6) : 1272 -1279.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2016, Vol. 31 ›› Issue (6) : 1272 -1279. DOI: 10.1007/s11595-016-1525-2
Advanced Materials

Structural, anisotropic and thermodynamic properties of Imm2-BCN

Author information +
History +
PDF

Abstract

Structural, anisotropic, and thermodynamic properties of Imm2-BCN were studied based on density function theory with the ultrasoft psedopotential scheme in the frame of the generalized gradient approximation (GGA). The elastic constants were confirmed that the predicted Imm2-BCN is mechanically stable. The anisotropy of elastic properties were also studied systematically. The anisotropy studies of Young’s modulus, shear modulus, linear compressibility, and Poisson’s ratio show that the Imm2-BCN exhibits a large anisotropy. Through the quasi-harmonic Debye model, the relations between the equilibrium volume V, thermal expansion α, the heat capacity C V and C P, the Grüneisen parameter γ, and the Debye temperature Θ D with pressure P and temperature T were also studied systematically.

Keywords

anisotropic properties / thermodynamic properties / the quasi-harmonic Debye model / BCN

Cite this article

Download citation ▾
Mengjiang Xing, Binhua Li, Zhengtao Yu, Qi Chen. Structural, anisotropic and thermodynamic properties of Imm2-BCN. Journal of Wuhan University of Technology Materials Science Edition, 2016, 31(6): 1272-1279 DOI:10.1007/s11595-016-1525-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Sun H, Jhi SH, Roundy D, et al. Structural Forms of Cubic BC2N[J]. Phys. Rev. B, 2001, 64(9): 094108

[2]

Tateyama Y, Ogitsu T, Kusakabe K, et al. Proposed Synthesis Path for Heterodiamond BC2N[J]. Phys. Rev. B, 1997, 55(16): 10161

[3]

Hall HT, Compton LA. Group IV Analogs and High Pressure, High Temperature Synthesis of B2O[J]. Inorg. Chem., 1965, 4(8): 1213-1216.

[4]

Wentorf RH, De Vries RC, Bundy FP. Sintered Superhard Materials[J]. Science, 1980, 208(4446): 873-880.

[5]

Liu AY, Cohen ML. Prediction of New Low Compressibility Solids[J]. Science, 1989, 245(4920): 841-842.

[6]

Teter DM, Hemley RJ. Low-Compressibility Carbon Nitrides[J]. Science, 1996, 271(5245): 53-55.

[7]

Hubert H, De vouard B, Garvie LAJ, et al. Icosahedral Packing of B12 Icosahedra in Boron Suboxide (B6O)[J]. Nature, 1998, 391: 376-378.

[8]

He DW, Akaishi M, Scott BL, et al. Growth of Boron Suboxide Crystals in the B-B2O3 System at High Pressure and High Temperature[J]. J. Mater. Res., 2002, 17(2): 284-290.

[9]

Chang J, Cheng Y, Fu M. First-principles Calculations of Thermodynamic Properties of Superhard Orthorhombic β-BC2N[J]. J. At. Mol. Sci., 2010, 1(3): 243-252.

[10]

Cheng YC, Wu XL, Li SH, et al. Ab Initio Determination of Lattice Dynamics and Thermodynamics of β-BC2N[J]. Solid State Commun., 2008, 146(1-2): 69-72.

[11]

Veprek S. Handbook of Ceramic Hard Materials[M]. R Riedel, 2000

[12]

Solozhenko VL, Andrault D, Fiquet G, et al. Synthesis of Superhard Cubic BC2N[J]. Appl. Phys. Lett., 2001, 78(10): 1385-1387.

[13]

Chen SH, Diefendorf RJ. Proceedings of the 3rd International Carbon Conference, 1980 44-46.

[14]

Montasser K, Morita S, Hattori S. ISPC-9 Pugnochiuso, 1989 1247-1250.

[15]

Zhang XX, Wang YC, Lv J, et al. First-principles Structural Design of Superhard Materials[J]. J. Chem. Phys., 2013, 138(11): 114101

[16]

Hohenberg P, Kohn W. Inhomogeneous Electron Gas[J]. Phys. Rev., 1964 136

[17]

Kohn W, Sham LJ. Self-Consistent Equations Including Exchange and Correlation Effects[J]. Phys. Rev., 1965, 140(4A): A1133-A1138.

[18]

Perdew JP, Burke K, Ernzerhof M. Generalized Gradient Approximation Made Simple[J]. Phys. Rev. Lett., 1996, 77(7): 3865

[19]

Ceperley DM, Alder BJ. Ground State of the Electron Gas by a Stochastic Method[J]. Phys. Rev. Lett., 1980, 45(7): 566

[20]

Perdew JP, Zunger A. Self-interaction Correction to Density-functional Approximations for Many-electron Systems[J]. Phys. Rev. B, 1981, 23(10): 5048-5079.

[21]

Clark SJ, Segall MD, Pickard CJ, et al. First Principles Methods Using CASTEP [J]. Z. Kristallogr., 2005, 220(5-6): 567-570.

[22]

Monkhorst HJ, Pack JD. Special Points for Brillouin-zone Integrations[J]. Phys. Rev. B, 1976, 13(12): 5188-5192.

[23]

Pfrommer BG, CôtéM L S, et al. Relaxation of Crystals with the Quasi-Newton Method[J]. J. Comput. Phys., 1997, 131(1): 233-240.

[24]

Blanco MA, Francisco E, Luaña V. GIBBS: Isothermal-isobaric Thermodynamics of Solids from Energy Curves Using a Quasiharmonic Debye Model[J]. Comput. Phys. Commun., 2004, 158(1): 57-72.

[25]

Peng F, Fu HZ, Cheng XL. First-principles Calculations of Thermodynamic Properties of TiB2 at High Pressure[J]. Phys. B, 2007, 400(1-2): 83-87.

[26]

Peng F, Fu HZ, Yang XD. Transition Phase and Thermodynamic Properties of PtC from First-principles Calculations[J]. Solid State Commun., 2008, 145(3): 91-94.

[27]

Xing MJ, Li BH. A Study of the Thermodynamic Properties of Pbca-BN Using the Quasi-Harmonic Debye Model[J]. Chin. J. Phys., 2014, 52(6): 1812-1824.

[28]

Liu CM, Ge NN, Fu ZJ, et al. Structural and Thermodynamic Properties of OsN2 from First-principles Calculations[J]. Chin. Phys. B., 2011, 20(4): 045101

[29]

Cheng Y, Lu LY, Jia OH, et al. Phase Transition and Thermodynamic Properties of SrS Via First-principles Calculations[J]. Chin. Phys. B., 2008, 17(4): 1355-1359.

[30]

Poirier JP. Introduction to the Physics of the Earth’s Interior[M]. Cambridge University Press, 1991

[31]

Blanco MA. Universidad de Oviedo, 1997

[32]

Maradudin AA, Montroll EW, Weiss GH, et al. Theory of Lattice Dynamics in the Harmonic Approximation[M]. Academic Press, 1971

[33]

Blanco MA, Pendás Martín A, Francisco E, et al. Thermodynamical Properties of Solids from Microscopic Theory: Applications to MgF2 and Al2O3[J]. J. Molec. Struct. Theochem., 1996, 368: 245-255.

[34]

Francisco E, Recio JM, Blanco MA, et al. Quantum-Mechanical Study of Thermodynamic and Bonding Properties of MgF2[J]. J. Phys. Chem. A, 1998, 102(9): 1595-1601.

[35]

Flórez M, Recio JM, Francisco E, et al. First-principles Study of the Rocksalt-cesium Chloride Relative Phase Stability in Alkali Halides[J]. Phys. Rev. B., 2002, 66(14): 144112

[36]

La Placa S, Post B. The Crystal Structure of Rhenium Diboride[J]. Acta Crystallogr., 1962, 15(2): 97-99.

[37]

Francisco E, Sanjurjo G, Blanco MA. Atomistic Simulation of SrF2 Polymorphs[J]. Phys. Rev. B, 2001, 63(9): 094107

[38]

Ghebouli B, Ghebouli MA, Fatmi M, et al. First-principles Study of the Structural, Elastic, Electronic, Optical and Thermodynamic Properties of the Cubic Perovskite CsCdCl3 under High Pressure[J]. Solid State Commun., 2010, 150(39-40): 1896-1901.

[39]

Li XF, Liu ZL, Ding CL, et al. First-principles Investigations on Mechanical Stability and Elastic Properties of Hexagonal Tungsten Dinitride under Pressure[J]. Mater. Chem. Phys., 2011, 130(1): 14-19.

[40]

Ciftci YO, Ozayman M, Surucu G, et al. Structural, Electronic, Elastic, Thermodynamic and Vibration Properties of TbN Compound from First Principles Calculations[J]. Solid State Sci., 2012, 14(3): 401-408.

[41]

Huang Q, Yu D, Zhao Z, et al. First-principles Study of O-BN: A sp 3-bonding Boron Nitride Allotrope[J]. J. Appl. Phys., 2012, 112(5): 053518

[42]

Fan CZ, Zeng SY, Li LX, et al. Potential Superhard Osmium Dinitride with Fluorite and Pyrite Structure: First-principles Calculations[J]. Phys. Rev. B, 2006, 74(12): 125118

[43]

Nye JF. Physical Properties of Crystals[M], 1985

[44]

Wu ZJ, Zhao EJ, Xiang HP, et al. Crystal Structures and Elastic Properties of Superhard IrN2 and IrN3 from First Principles[J]. Phys. Rev. B, 2007, 76(5): 054115

[45]

Voigt W. Lehrburch der Kristallphysik, 1928

[46]

Reußs A. Berechnung der Fließgrenze von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle[J]. Z Angew. Math. Mech., 1929, 9(1): 49-58.

[47]

Hill R. Proc. The Elastic Behaviour of a Crystalline Aggregate[J]. Phys. Soc. London, 1952, 65(9): 349-354.

[48]

Shimada K, Sota T, Suzuki K. First-principles Study on Electronic and Elastic Properties of BN, AlN, and GaN[J]. J. Appl. Phys., 1998, 84(9): 4951-4958.

[49]

Connétable D, Thomas O. First-principles Study of the Structural, Electronic, Vibrational, and Elastic Properties of Orthorhombic NiSi[J]. Phys. Rev. B, 2009, 79(9): 094101

[50]

Ravindran P, Fast L, Korzhavyi PA, et al. Density Functional Theory for Calculation of Elastic Properties of Orthorhombic Crystals: Application to TiSi2[J]. J. Appl. Phys., 1998, 84(9): 4891-4904.

[51]

Marmier A, Lethbridge ZAD, Walton RI, et al. ElAM: A Computer Program for the Analysis and Representation of Anisotropic Elastic properties[J]. Comput. Phys. Commun., 2010, 181(12): 2102-2115.

[52]

Fan QY, Wei Q, Chai CC, et al. Elastic and Electronic Properties of Imm2-and I-4m2-BCN[J]. Comput. Mater. Sci., 2015, 97: 6-13.

[53]

Petrescu ML. Boron Nitride Theoretical Hardness Compared to Carbon Polymorphs[J]. Diamond Relat. Mater., 2004, 13(10): 1848-1853.

[54]

Grimsditch M, Zouboulis ES, Polian A. Elastic Constants of Boron Nitride[J]. J. Appl. Phys., 1994, 76(2): 832-834.

AI Summary AI Mindmap
PDF

90

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/