Low temperature synthesis of nano porous 12CaO∙7Al2O3 powder by hydrothermal method

Karim Khan , Jia Li , Wenwei Zou , Wei Xu , Ye Yang , Weijie Song

Journal of Wuhan University of Technology Materials Science Edition ›› 2016, Vol. 31 ›› Issue (6) : 1201 -1205.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2016, Vol. 31 ›› Issue (6) : 1201 -1205. DOI: 10.1007/s11595-016-1512-7
Advanced Materials

Low temperature synthesis of nano porous 12CaO∙7Al2O3 powder by hydrothermal method

Author information +
History +
PDF

Abstract

Single-phase insulating 12CaO∙7Al2O3 (C12A7) powder was synthesized using an optimized hydrothermal method. Pure phase of C12A7 was got at a comparatively lower temperature (c.a. 300 °C) than that has been previously reported. The crystallite size of the synthesized C12A7 powder was 7±2 nm. The surface area values calculated for all the samples at a synthesis temperature range of 250-800 °C for 5 h were in the range of about 19-24 m2/g, with pore sizes of 12-20 nm. This low-temperature-based synthetic strategy along with nano porous structures and a high surface area value can facilitate catalyst application.

Keywords

C12A7 / hydrothermal method / low temperature / nano pore

Cite this article

Download citation ▾
Karim Khan, Jia Li, Wenwei Zou, Wei Xu, Ye Yang, Weijie Song. Low temperature synthesis of nano porous 12CaO∙7Al2O3 powder by hydrothermal method. Journal of Wuhan University of Technology Materials Science Edition, 2016, 31(6): 1201-1205 DOI:10.1007/s11595-016-1512-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Kim SW, Matsuishi S, Miyakawa M, et al. Fabrication of Room Temperature-stable 12CaO·7Al2O3 Electride: A Review [J]. J. Mater. Sci: Mater. Electron., 2007, 18: S5-S14.

[2]

Hosono H, Hayashi K, Kamiya T, et al. New Functionalities in Abundant Element Oxides: Ubiquitous Element Strategy[J]. Sci. Technol. Adv. Mater., 2011, 12: 1-22.

[3]

Toda Y, Yanagi H, Ikenaga E, et al. Work Function of a Room-Temperature, Stable Electride [Ca24Al28O64]4+(e)4[J]. Adv. Mater., 2007, 19: 3564-3569.

[4]

Garcia LFR, Aguilar FG, Sabino MG, et al. Mechanical and Microstructural Characterisation of New Calcium Aluminate Cement [J]. Adv. Appl. Ceram., 2011, 110: 469-475.

[5]

Jeevaratnam J, Glasser LSD, Glasser FP. Structure of Calcium Aluminate, 12CaO·7Al2O3[J]. Nature, 1962, 194: 764-765.

[6]

Lacerda M, Irvine JTS, Glasser FP, et al. High Oxide ion Conductivity in Ca12Al14O33[J]. Nature, 1988, 332: 525-526.

[7]

Hayashi K, Matsuishi S, Kamiya T, et al. Occurrence of Superoxide Radical Ion in Crystalline 12CaO·7Al2O3 Prepared via Solid-state Reactions[J]. Nature, 2002, 419: 462-465.

[8]

Kitano M, Inoue Y, Yamazaki Y, et al. Ammonia Synthesis Using a Stable Electride as an Electron Donor and Reversible Hydrogen Store[J]. Nat.Chem., 2012, 4: 934-940.

[9]

Hayashi F, Toda Y, Kanie Y, et al. Ammonia Decomposition by Ruthenium Nanoparticles Loaded on Inorganic Electride C12A7:e-[J]. Chem. Sci., 2013, 4: 3124-3130.

[10]

Honkala K, Hellman A, Remediakis IN, et al. Ammonia Synthesis from First-Principles Calculations[J]. Science, 2005, 307: 555-558.

[11]

Toda Y, Hirayama H, Kuganathan N, et al. Activation and Splitting of Carbon Dioxide on the Surface of an Inorganic Electride Material[J]. Nat.Commun., 2013 1-8.

[12]

Toda Y, Matsuishi S, Hayashi K, et al. Field emission of Electron Anions Clathrated in Subnanometer-sized Cages in [Ca24Al28064]4+(e-) [J]. Adv. Mater., 2004, 16: 685-689.

[13]

CKing PD, Veal TD. Conductivity in Transparent Oxide Semiconductors[J]. J. Phys.: Condens.Matter, 2011, 23: 334214.

[14]

Dong Y, Hayashi K, Nozoe H, et al. Chloride-Ion-Stabilized Strontium Mayenite: Expansion of Versatile Material Family[J]. J. Am. Ceram. Soc., 2014, 97: 4037-4044.

[15]

Ozawa K, Sakamoto N, Wakiya N, et al. Fabrication of 12CaO·7Al2O3 Powders with High Specific Surface Area by Sol-gel and Ball-milling Method[J]. J. Ceram. Soc. Jpn., 2011, 119: 460-463.

[16]

Hayashi F, Kitano M, Yokoyama T, et al. Treatment for Conductive 12CaO·7Al2O3 Electride Powder by Rapid Thermal Annealing Processing and Its Application to Ammonia Synthesis[J]. Chem Cat Chem, 2014, 6: 1317-1323.

[17]

Gong L, Lin Z, Ning S, et al. Synthesis and Characteristics of the C12A7-O- Nanoparticles by Citric Acid Sol-gel Combustion Method[J]. Mater. Lett., 2010, 64: 1322-1324.

[18]

Li C, Hirabayashi D, Suzuki K. Synthesis of Higher Surface Area Mayenite by Hydrothermal Method[J]. Mater. Res. Bull., 2011, 46: 1307-1310.

AI Summary AI Mindmap
PDF

188

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/