Influence of compaction pressure on the accelerated carbonation of calcium hydroxide

Yanfeng Fang , Jun Chang , Mingli Cao

Journal of Wuhan University of Technology Materials Science Edition ›› 2016, Vol. 31 ›› Issue (6) : 1187 -1192.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2016, Vol. 31 ›› Issue (6) : 1187 -1192. DOI: 10.1007/s11595-016-1510-9
Advanced Materials

Influence of compaction pressure on the accelerated carbonation of calcium hydroxide

Author information +
History +
PDF

Abstract

Mineral carbonation using waste cement is a promising method to solve the problems caused by CO2 emission and waste cement. Compaction pressure is an important parameter for mineral carbonation of calcium hydroxide, one of the most dominant composite of waste cement that can be carbonated. The carbonation degree, morphology of products and compressive strength of carbonated compacts are influenced by compaction pressure significantly. Results show that the carbonation degree of calcium hydroxide increases at first (0-8 MPa) and then decreases in the higher compaction pressure range (10-14 MPa). At the meantime, results also indicate that lower compaction pressure accelerates the early carbonation but hinder carbonation in the later stages. For the morphologies of carbonation products, calcium carbonate tends to form typical crystal morphology of calcite (rhombohedral) under lower compaction pressure, while it will become ellipsoid-like when compaction pressure reaches 8 MPa. TGA and water content results show that there is an optimal water content for the carbonation. In addition, lower water content is adverse to the carbonation at later stage and the CO2 is difficult to penetrate into the inside of compacts when water content is high, which will hinder the carbonation. XRD and TGA results show that the carbonation products are calcite and small amount of amorphous calcium carbonate.

Keywords

calcium hydroxide / accelerated carbonation / mass gain degree / compaction pressure

Cite this article

Download citation ▾
Yanfeng Fang, Jun Chang, Mingli Cao. Influence of compaction pressure on the accelerated carbonation of calcium hydroxide. Journal of Wuhan University of Technology Materials Science Edition, 2016, 31(6): 1187-1192 DOI:10.1007/s11595-016-1510-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Rattan Lal. Carbon Sequestration[J]. Philos.^T. R. Soc. B., 2008, 363(1492): 815-830.

[2]

David W Keith. Why Capture CO2 from the Atmosphere[J]. Science, 2009, 325(5948): 1654-1655.

[3]

Barker DJ, Turner SA, Napier-Moore P A, et al. CO2 Capture in the Cement Industry[J]. Energy Procedia, 2009, 1(1): 87-94.

[4]

Hu S, He Y. Preparation of Regenerated Binding Material Using Waste Concrete[J]. J. Chinese ceram. Soc., 2007, 5(35): 593-599.

[5]

Wu B, Zhao X, Yang Y. Regeneration Structural Members Containing Large-Size Demolished Concrete: A Review[J]. Journal of South China University of Technology, 2012, 10(40): 174-183.

[6]

Liu M, Wu H, Chang J. Carbonation of Cement Minerals and Sand Clinker[J]. Journal of university of Jinan, 2010, 2(24): 115-118.

[7]

Huijgen WJJ, Witkamp GJ, Comans RNJ. Mechanisms of Aqueous Wollastonite Carbonation as a Possible CO2 Sequestration Process[J]. Chem. Eng. Sci., 2006, 61(13): 4242-4251.

[8]

Sorochkin M, Shchrov A, Safonov I. Study of the Possibility of Using Carbon Dioxide for Accelerating the Hardening of Products Made from Portland Cement[J]. J. Appl. Chem., 1975, 48(6): 1271-1274.

[9]

López-Arce P, Gomez-Villalba LS, Martinez-Ramirez S, et al. Influence of Relative Humidity on the Carbonation of Calcium Hydroxide Nanoparticles and the Formation of Calcium Carbonate Polymorphs[J]. Powder Technol., 2011, 205(1): 263-269.

[10]

De Silva P, Bucea L, Sirivivatnanon V. Chemical, Microstructural and Strength Development of Calcium and Magnesium Carbonate Binders[J]. Cem. Concr. Res., 2009, 39(5): 460-465.

[11]

Loste E, Wilson RM, Seshadri R, et al. The Role of Magnesium in Stabilizing Amorphous Calcium Carbonate and Controlling Calcite Morphologies[J]. J. Cryst. Growth, 2003, 254(1): 206-218.

[12]

Kitamura M. Crystallisation and Transformation Mechanism of Calcium Carbonate Polymorphs and the Effect of Magnesium Ion[J]. J. Colloid Interf. Sci., 2001, 236(2): 318-327.

[13]

CAO M, LI Y, CHANG J, et al. Influence of Mole ratio of Calcium to Magnesium on Carbonation Properties of Calcium Hydroxide[J]. Chinese ceram. Soc., 2013, 41(6): 831-836.

[14]

Cizer Rodriguez-Navarro C, Ruiz-Agudo E, et al. Phase and Morphology Evolution of Calcium Carbonate Precipitated by Carbonation of Hydrated Lime[J]. J. Mater. Sci., 2012, 47(16): 6151-6165.

[15]

Eloneva S, Teir S, Salminen J, et al. Fixation of CO2 by Carbonating Calcium Derived from Blast Furnace Slag[J]. Energy, 2008, 33(9): 1461-1467.

[16]

Bukowski JM, Berger RL. Reactivity and Strength Development of CO2 Activated Non-hydraulic Calcium Silicates[J]. Cem. Concr. Res., 1979, 9(1): 57-68.

[17]

Roques H, Girou A. Kinetics of the Formation Conditions of Carbonate Tartars[J]. Water Res., 1974, 8(11): 907-920.

[18]

Van Balen K. Carbonation Reaction of Lime, Kinetics at Ambient Temperature[J]. Cem. Concr. Res., 2005, 35(4): 647-657.

[19]

De Silva P, Bucea L, Moorehead D R, et al. Carbonate Binders: Reaction Kinetics, Strength and Microstructure[J]. Cem. Concr. Compos., 2006, 28(7): 613-620.

[20]

Mounanga P, Khelidj A, Loukili A, et al. Predicting Ca(OH)2 Content and Chemical Shrinkage of Hydrating Cement Pastes Using Analytical Approach[J]. Cem. Concr. Res., 2004, 34(2): 255-265.

[21]

Huijgen WJJ, Witkamp GJ. Mineral CO2 Sequestration by Steel Slag Carbonation[J]. Environ. Sci. Technol., 2005, 39(24): 9676-9682.

[22]

Chang J, Wu H. Study on Carbonation Mechanism of Steel Slag[J]. J. Chinese Ceram. Soc., 2010, 7(38): 1185-1190.

[23]

Beruto DT, Botter R. Liquid-like H2O Adsorption Layers to Catalyze the Ca(OH)2/CO2 Solid-gas Reaction and to Form a Non-protective Solid Product Layer at 20 °C[J]. J. Eur. Ceram. Soc., 2000, 20(4): 497-503.

[24]

Van Balen K, Van Gemert D. Modelling Lime Mortar Carbonation[J]. Mater. Struct., 1994, 27(7): 393-398.

[25]

Naka K, Chujo Y. Control of Crystal Nucleation and Growth of Calcium Carbonate by Synthetic Substrates[J]. Chem. Mater., 2001, 13(10): 3245-3259.

AI Summary AI Mindmap
PDF

93

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/