Polymorph transformation of tricalcium silicate doped with heavy metal

Yang Lü , Xiangguo Li , Baoguo Ma , Geert De Schutter

Journal of Wuhan University of Technology Materials Science Edition ›› 2016, Vol. 31 ›› Issue (4) : 883 -890.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2016, Vol. 31 ›› Issue (4) : 883 -890. DOI: 10.1007/s11595-016-1463-z
Cementitious Materials

Polymorph transformation of tricalcium silicate doped with heavy metal

Author information +
History +
PDF

Abstract

The aim of the present study was to investigate the influence of heavy metals on the polymorph transformation of tricalcium silicate. Heavy metal (0.1wt% to 3.0wt%) of Cr, Zn, Cu, Ni and Pb (in oxides form) was added into the raw mixtures and then sintered together three times at 1450 °C for 2 h. The f-CaO content of doped C3S was determined by the glycerol-ethanol method, and their polymorph transformation was investigated by means of XRD and FTIR. Thermal analysis (DTA/DTG) was conducted to determine the reaction temperatures and mass losses during the sintering process of raw mixtures. The concentration of heavy metal in C3S after sintering was determined by ICP-AES. The experimental results indicate that heavy metal doping contributes to a higher symmetry of C3S except for Pb. Addition of up to 3.0wt%, Cr will lead to a decomposition of C3S into C2S and CaO; Zn will cause a transformation from T1 to M2 polymorph, and then to R polymorph; Cu and Ni cause a gradual transformation from T1 to T2 and then to M1 and/or M2 polymorph. During the sintering process, all the Pb releases into atmosphere because of evaporation.

Keywords

tricalcium silicate / heavy metal / polymorph transformation / stabilization

Cite this article

Download citation ▾
Yang Lü, Xiangguo Li, Baoguo Ma, Geert De Schutter. Polymorph transformation of tricalcium silicate doped with heavy metal. Journal of Wuhan University of Technology Materials Science Edition, 2016, 31(4): 883-890 DOI:10.1007/s11595-016-1463-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Singh M, Upadhayay SN, Prasad PM. Preparation of Special Cements from Red Mud[J]. Waste Manage., 1996, 16(8): 665-670.

[2]

Espinosa DCR, Tenório JAS. Laboratory Study of Galvanic Sludge’s Influence on the Clinkerization Process[J]. Resour. Conserv. Recycl., 2000, 31: 71-82.

[3]

Shih PH, Chang JE, Chiang LC. Replacement of Raw Mix in Cement Production by Municipal Solid Waste Incineration Ash[J]. Cem. Concr. Res., 2003, 33: 1831-1836.

[4]

Shih PH, Chang JE, Lu HC, Chiang LC. Reuse of Heavy Metal-Containing Sludge in Cement Production[J]. Cem. Concr. Res., 2005, 35: 2110-2115.

[5]

Wang L, Jin YY, Nie YF, Li RD. Recycling of Municipal Solid Waste Incineration Fly Ash for Ordinary Portland Cement Production: A Real-scale Test[J]. Resour. Conserv. Recycl., 2010, 54: 1428-1435.

[6]

Chen HX, Ma XW, Dai HJ. Reuse of Water Purification Sludge as Raw Material in Cement Production[J]. Cem. Concr. Compos., 2010, 32: 436-439.

[7]

Wu K, Shi HS, De Schutter G, Guo XL, Ye G. Preparation of Alinite Cement from Municipal Solid Waste Incineration Fly Ash[J]. Cem. Concr. Compos., 2012, 34: 322-327.

[8]

Stephan D, Maleki H, Knöfel D, Eber B, Härdtl R. Influence of Cr, Ni, and Zn on the Properties of Pure Clinker Phases Part I. C3S[J]. Cem. Concr. Res., 1999, 29: 545-552.

[9]

Chinese Standard GB176-1996. Method for Chemical Analysis of Cement[S], 1996

[10]

Saikia N, Kato S, Kojima T. Production of Cement Clinkers from Municipal Solid Waste Incineration (MSWI) Fly Ash[J]. Waste Manage., 2007, 27(9): 1178-1189.

[11]

Sychev MM, Korneev VI. Chromalite in Portland Cement Clinker[J]. Translation from: Zhurnal. Prikladnoi Khimii, 1963, 36: 2642-2647.

[12]

Fierens P, Verhaegen JP. Structure and Reactivity of Chromium-Doped Tricalcium Silicate[J]. J. Am. Ceram. Soc., 1972, 55(6): 309-312.

[13]

Sakurai T, Sato T, Yoshinaga A. The Effect of Minor Components on the Early Hydraulic Activity of the Major Phases of Portland Cement Clinker[C]. 5th International Symposium on the Chemistry of Cement, 1968 300-321.

[14]

Sinyoung S, Songsiriritthigul P, Asavapisit S, Kajitvichyanukul P. Chromium Behavior during Cement-production Processes: A Clinkerization, Hydration, and Leaching Study[J]. J. Hazard. Mater., 2011, 191: 296-305.

[15]

Katyal NK, Ahluwalia SC, Parkash R. Effect of Cr2O3 on the Formation of C3S in 3CaO:1SiO2:xCr2O3 System[J]. Cem. Concr. Res., 2000, 30: 1361-1365.

[16]

Odler I, Abdul-Maula S. Polymorphism and Hydration of Tricalcium Silicate Doped With ZnO[J]. J. Am. Ceram. Soc., 1983, 66(1): 1-4.

[17]

Bigaré M, Guinier A, Mazières C, et al. Polymorphism of Tricalcium Silicate and Its Solid Solutions[J]. J. Am. Ceram. Soc., 1967, 50(11): 609-619.

[18]

Golovastikov NI, Matveeva RG, Belov NV. Crystal Structure of the Tricalcium Silicate 3CaO·SiO2=C3S[J]. Sov. Phys. Crystallogr., 1976, 20(4): 441-445.

[19]

Jeffery JW. The Crystal Structure of Tricalcium Silicate[J]. Acta Cryst., 1952, 5: 26-35.

[20]

Urabe K, Shirakami T, Iwashima M. Superstructure in a Triclinic Phase of Tricalcium Silicate[J]. J. Am. Ceram. Soc., 2000, 83(5): 1253-1258.

[21]

Dunstetter F, de Noirfontaine MN, Courtial M. Polymorphism of Tricalcium Silicate, the Major Compound of Portland Cement Clinker 1. Structural Data: Review and Unified Analysis[J]. Cem. Concr. Res., 2006, 36: 39-53.

[22]

Maki I, Chromy S. Characterization of the Alite Phase in Portland Cement Clinker by Microscopy[J]. Il Cemento, 1978, 3: 252-274.

[23]

Maki I, Chromy S. Microscopic Study on the Polymorphism of Ca3SiO5[J]. Cem. Concr. Res., 1978, 8: 407-414.

[24]

Maki I, Kato K. Phase Identification of Alite in Portland Cement Clinker[J]. Cem. Concr. Res., 1982, 12: 93-100.

[25]

Sinclair W, Groves GW. Transmission Electron Microscopy and X-ray Diffraction of Doped Ricalcium Silicate[J]. J. Am. Ceram. Soc., 1984, 67(5): 325-330.

[26]

Barnes P. Structure and Performance of Cement[M], 1983 Barking: Applied Science Publishers. 109

[27]

Taylor HFW. Cement Chemistry[M], 1990 New York: Academic Press Inc..

[28]

Wang PM, Li HX, Wu JG. Formation of Tricalcium Silicate with Different Content of Copper Oxide[J]. Journal of Chinese Ceramic Society, 2007, 35(10): 1353-1358.

[29]

Urabe K, Nakano H, Morita H. Structural Modulations in Monoclinic Tricalcium Silicate Solid Solutions Doped with Zinc Oxide, M(I), M(II), and M(III) [J]. J. Am. Ceram. Soc., 2002, 85(2): 423-429.

[30]

Woermann E, Hahn T, Eysel W. Chemical and Structural Investigations on the Solid Solutions of Tricalcium Silicate[J]. Zement-Kalk-Gips, 1963, 16(9): 370-375.

[31]

Omotoso OE, Ivey DG, Mikula R. Characterization of Chromium doped Tricaclium Silicate Using SEM/EDS, XRD and FTIR[J]. J. Hazard. Mater., 1995, 42: 87-102.

[32]

Omotoso OE, Ivey DG, Mikula R. Containment Mechanism of Trivalent Chromium in Tricalcium Silicate[J]. J. Hazard. Mater., 1998, 60: 1-28.

[33]

Handke M, Jurkiewicz ME. IR and Raman Spectroscopy Studies of Tricalcium Silicate Structure[J]. Ann. Chim. Fr., 1979, 4: 145-161.

[34]

Ma XW, Chen HX, Wang PM. Effect of CuO on the Formation of Clinker Minerals and Hydration Properties[J]. Cem. Concr. Res., 2010, 40: 1681-1687.

[35]

Kolovos K, Tsivilis S, Kakali G. The Effect of Foreign Ions on the Reactivity of the CaO-SiO2-Al2O3-Fe2O3 System Part II: Cations[J]. Cem. Concr. Res., 2002, 32: 463-469.

AI Summary AI Mindmap
PDF

97

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/