Nanosized carbon dots from organic matter and biomass

Yuanyuan Li , Tong Chen , Yulong Ma

Journal of Wuhan University of Technology Materials Science Edition ›› 2016, Vol. 31 ›› Issue (4) : 823 -826.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2016, Vol. 31 ›› Issue (4) : 823 -826. DOI: 10.1007/s11595-016-1452-2
Advanced Materials

Nanosized carbon dots from organic matter and biomass

Author information +
History +
PDF

Abstract

Carbon nanoparticles (C-dots) were prepared by refluxing the combustion soots of candles and corn stalk in nitric acid. The synthesized C-dots were characterized. The results showed a sharp increase in oxygen content and a sharp decrease in carbon content after oxidation. The C-dots had -OH and -CO2H groups introduced which made them hydrophilic. However, their difference was also obvious. The C-dots from candle soot had a 10-45 nm broad particle size distribution, and those from corn stalk soot had a 6-18 nm relatively small and narrow size distribution. The C-dots were mainly of sp 2 and sp 3 carbon structure different from the C-dots of diamond-like structure from candle soot. Interestingly, two kinds of C-dots all exhibited unique photoluminescent properties. The obtained C-dots have potential applications in a broad range of areas.

Keywords

carbon nanoparticles / carbon structure / organic matter / biomass / characterization

Cite this article

Download citation ▾
Yuanyuan Li, Tong Chen, Yulong Ma. Nanosized carbon dots from organic matter and biomass. Journal of Wuhan University of Technology Materials Science Edition, 2016, 31(4): 823-826 DOI:10.1007/s11595-016-1452-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Baker SN, Baker GA. Luminescent Carbon Nanodots: Emergent Nanolights[J]. Angew. Chem. Int. Edit., 2010, 49: 6726-6744.

[2]

John CV, Luis AC. Fractionation of Carbon-based Nanomaterials by Anion-exchange[J]. Anal. Chem., 2012, 84(2): 1178-1183.

[3]

Sun YP, Zhou B, Lin Y, et al. Quantum-sized Carbon Dots for Bright and Colorful Photoluminescence[J]. J. Am. Chem. Soc., 2006, 128(24): 756-7757.

[4]

Liu HP, Ye T, Mao CD. Fluorescent Carbon Nanoparticles Derived from Candle Soot[J]. Angew. Chem. Int. Edit., 2007, 46: 6473-6457.

[5]

Ray SC, Saha A, Jana NR, et al. Fluorescent Carbon Nanoparticles: Synthesis, Characterization, and Bioimaging Application[J]. J. Phys. Chem. C, 2009, 113(43): 18546-18551.

[6]

Yang ST, Wang X, Wang H, et al. Carbon Dots as Nontoxic and Highperformance Fluorescence Imaging Agents[J]. J. Phys. Chem. C, 2009, 2113(43): 18110-18114.

[7]

Yang ST, Cao L, Luo PG, et al. Carbon Dots for Optical Imaging in vivo[J]. J. Am. Chem. Soc., 2009, 131(32): 11308-11309.

[8]

Cao L, Wang X, Meziani MJ, et al. Carbon Dots for Multiphoton Bioimaging[J]. J. Am. Chem. Soc., 2007, 129: 11318-11319.

[9]

Liu R, Wu D, Liu S, et al. An Aqueous Route to Multicolor Photoluminescent Carbon Dots Using Silica Spheres as Carriers[J]. Angew. Chem. Int. Edit., 2009, 48: 4598-4601.

[10]

Chen RJ, Bangsaruntip S, Drouvalakis KA, et al. Noncovalent Functionalization of Carbon Nanotubes for Highly Specific Biosensors[J]. Proc. Natl. Acad. Sci. the USA, 2003, 100: 4984-4989.

[11]

Park KH, Chhowalla M, Iqbal Z, et al. Single-walled Carbon Nanotubes Are a New Class of Ion Channel Blockers[J]. J. Biol. Chem., 2003, 278: 50212-50216.

[12]

Wang HB, Thoss M. Multilayer Formulation of the Multiconfiguration Time-dependent Hartree Theory[J]. J. Chem. Phys., 2003 1289-1299.

[13]

Mitchell DT, Lee SB, Trofin LL, et al. Smart Nanotubes for Bioseparations and Biocatalysis[J]. J. Am. Chem. Soc., 2002, 124: 11864-11865.

[14]

Guan B, Zou F, Zhi J. Nanodiamond as The pH-responsive Vehicle for An Anticancer drug[J]. Small, 2010, 6: 1514-1519.

[15]

Chang YR, Lee HY, Chen K, et al. Mass Production and Dynamic Imaging of Fluorescent Nanodiamonds[J]. Nat. Nanotechnol., 2008, 3: 284-288.

[16]

Sun YP, Zhou B, Lin Y, et al. Pyrolytic Formation and Photoluminescence Properties of A New Layered Carbonaceous Material with Graphite Oxide-mimicking Characteristics[J]. Carbon, 2009, 47: 519-526.

[17]

Hu SL, Niu KY, Sun J, et al. One-step Synthesis of Fluorescent Carbon Nanoparticles by Laser Irradiation[J]. J. Mat. Chem., 2009, 19: 484-488.

[18]

Neugart F, Zappe A, Jelezko F, et al. Dynamics of Diamond Nanoparticles in Solution and Cells[J]. Nano lett., 2007, 7: 3588-3591.

[19]

Yu SJ, Kang MW, Chang HC, et al. Bright Fluorescent Nanodiamonds:? No Photobleaching and Low Cytotoxicity[J]. J. Am. Chem. Soc., 2005, 127: 17604-17605.

[20]

Batalov A, Jacques V, Kaiser F, et al. Low Temperature Studies of the Excited-state Structure of Negatively Charged Nitrogen-vacancy Color Centers in Diamond[J]. Phys. Rev. Lett., 2009, 102: 195506-195510.

[21]

Zhao QL, Zhang ZL, Huang BH, et al. Facile Preparation of Low Cytotoxicity Fluorescent Carbon Nanocrystals by Electrooxidation of Graphite[J]. Chem. Commun., 2008, 41: 5116-5118.

[22]

Selvi BR, Jagadeesan D, Suma BS, et al. Intrinsically Fluorescent Carbon Nanospheres as A Nuclear Targeting Vector: Delivery of Membrane-impermeable Molecule to Modulate Gene Expression in Vivo[J]. Nano. Lett., 2008, 8: 3182-3188.

[23]

Bourlinos AB, Stassinopoulos A, Anglos D, et al. Photoluminescent Carbogenic Dots[J]. Chem. Mater., 2008, 20: 4539-4541.

[24]

Tian L, Ghosh D, Chen W, et al. Nanosized Carbon Particles from Natural Gas Soot[J]. Chem. Mater., 2009, 21: 2803-2809.

[25]

Liu Y, Wu P. Graphene Quantum Dot Hybrids as Efficient Metal-free Electrocatalyst for the Oxygen Reduction Reaction[J]. ACS Appl. Mater. Interfaces, 2013, 5(8): 3362-3369.

[26]

Sun D, Ban R, Zhang PH, et al. Hair Fiber as a Precursor for Synthesizing of Sulfur-and Nitrogen-co-doped Carbon Dots with Tunable Luminescence Properties[J]. Carbon, 2013, 64: 424-434.

[27]

Yang YH, Cui JH, Zheng MT, et al. One Step Synthesis of Aminofunctionalized Fluorescent Carbon Nanoparticles by Hydrothermal Carbonization of Chitosan[J]. Chem. Commun., 2012, 48(3): 380-382.

[28]

Li L, Wu G, Yang G, et al. Focusing on Luminescent Graphene Quantum Dots: Current Status and Future Perspectives[J]. Nanoscale, 2013, 5(10): 4015-4039.

[29]

Xu J, Zhou Y, Liu S, et al. Low-cost Synthesis of Carbon Nanodots from Natural Products as Fluorescent Probe for the Detection of Ferrum (III) Ion in Lake Water[J]. Anal. Methods, 2014, 6(7): 2086-2090.

[30]

Tang L, Ji R, Cao X, et al. Deep Ultraviolet Photoluminescence of Water-soluble Self-passivated Graphene Quantum Dots[J]. ACS Nano, 2012, 6(6): 5102-5110.

[31]

Wu MB, Wang Y, Wu WT, et al. Preparation of Functionalized Watersoluble Photoluminescent Carbon Quantum Dots from Petroleum Coke[J]. Corbon, 2014, 78: 480-489.

[32]

Rahy A, Zhou C, Zheng J, et al. Photoluminescent Carbon Nanoparticles Produced by Confined Combustion of Aromatic Compounds[J]. Carbon, 2012, 50(3): 1298-1302.

[33]

Liang Q, Ma W, Shi YV, et al. Easy Synthesis of Highly Fluorescent Carbon Quantum Dots from Gelatin and Their Luminescent Properties and Applications[J]. Carbon, 2013, 60: 421-428.

[34]

Liao B, Long P, He B, et al. Reversible Fluorescence Modulation of Spiropyran-functionalized Carbon Nanoparticles[J]. J. Mater. Chem. C, 2013, 1(23): 3716-3721.

AI Summary AI Mindmap
PDF

96

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/